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Abstract 

This final year Information and Telecommunications Engineering project report presents a 

novel FGPA implementation of a barrel distortion correction algorithm. In order to 

perform real-time correction in hardware the undistorted output pixels must be produced in 

raster order for display to a VGA screen.  To do this the implementation uses the current 

scan position in the undistorted image to determine which pixel in the distorted image to 

display. The implementation employs the use of a look-up table with interpolation to 

reduce the complexity of the hardware design, without significant loss of precision. The 

report details the background of the hardware and design environment used, and then 

barrel distortion and the model selected for correcting it. The implementation aspects are 

discussed and the results of the implemented design are shown. This leads to a discussion 

on future work and conclusions. 

 

Keywords: FPGA, reconfigurable hardware, lens distortion, camera calibration 
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1 Background 

1.1 FPGA 
Field Programmable Gate Arrays combine the speed of hardware with the flexibility of 

software programming. FPGA devices feature a gate array like architecture with a matrix 

of logic cells surrounded by I/O cells. The logic cells called configurable logic blocks 

(CLBs) are linked together using segments of metal interconnects which can be linked 

together in an arbitrary manner by programmable switches, figure 1.1. This means that 

almost any routing combination is possible. 

Figure 1.1 FPGA layout taken from [2] 

 

Xilinx was the first to introduce these devices in 1985 and offer a number of families of re-

programmable, static memory based FPGAs including the one used in my project the 

SPARTAN II. There are two main building block in Xilinx FPGAs; CLBs which provide 
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the functional elements of constructing the required logic (figure 1.2), and input/output 

blocks (IOBs) which provide the interface between the pins of the package and the internal 

signal lines.  

Figure 1.2 Spartan II Slice, there are two slices in a Configurable Logic Block, taken from [2] 

Block RAM is also provided on some families, including the SPARTAN II. These are 

small blocks of RAM that can be declared as on chip RAM or ROM for use with look up 

tables or buffering. Memory functions can also be constructed out of CLBs that allow for 

all elements to be accessed at a time however this reduces the complexity of logic design 

that can be implemented due to the reduction in CLBs for logic. On Xilinx products the 

Block RAM is dual port where one read and one write or two reads can be performed in a 
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single block at the same time. The functionality of each circuit bock is customised during 

configuration by programming internal static memory cells. The values stored in these 

memory cells determine the logic functions and interconnections implemented in the 

FPGA. 

 

There are a number of different lengths of interconnects including; direct between CLBs, 

single, double and long lines. The reason for this is that when a signal is passed in to a 

switching matrix there is a delay caused by the programmable pass transistors which are 

used to establish connections between lines. Thus to improve the speed of communication 

between CLBs which are located a distance apart the longer lines are used to reduce the 

number of switching matrix passed through. Single lines provide the greatest interconnect 

flexibility and offer fast routing between adjacent blocks.  

 

Double-length lines run past two CLBs before entering a switching matrix. These lines are 

grouped in pairs with one of the pairs going into the switching matrix while the other 

bypasses it. These then swap for the next switching matrix. Double-length lines are used to 

provide fast intermediate interconnects while still retaining a level of routing flexibility, 

figure 1.3. 

Figure 1.3 Interconnects and Switching Matrix taken from [1] 

Long-lines form a grid of interconnects that run the length or width of the FPGA, figure 

1.4. These are intended for time-critical signals or nets that are distributed over a large 

distance. These do not pass though the switching matrixes. 
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Figure 1.4 Signal Lines, taken form [1] 

 

Due to the complex nature of the routing it is normal to use an automatic routing 

algorithm. For this to work effectively in the design of the logic signals that are time 

critical need to be identified and maximum timing constraints found. These constraints can 

then be used by the routing algorithm to find a configuration of interconnects which can 

achieve the desired result. This routing algorithm also needs to be able to move the logic 

functions implemented in one CLB to another CLB to enable faster signalling. 

 

Mapping of described logic to CLBs also needs to be done. Simple functions might be 

implemented in a single CLB but if the function is complex, like an adder or multiplier, 

several CLBs might need to be used, with the logic spread between them. 

 

Finally I/O pins need to be configured for input, output or tri-state operation. And the 

appropriate signals need to be routed form the pins to the logic. 

 

Once this hardware is mapped and routed for the FPGA a bit file in a PROM file is created 

to configure the device [1]. The bit file is stored into the static RAM of the FPGA, and 

controls the functions f the CLBs, IOBs, and the connections made by the switch matrix in 

the interconnects. 
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1.2 Celoxica  
The design was prototyped on the Celoxica RC100 development board using Handel-C. 

Handel-C is designed to be a high-level design language that can be compiled to hardware. 

By using FPGAs in the design of a system, all or part of the design can be implemented in 

hardware rather than software. By doing this there can be significant speed improvement 

by removing the normal need in a CPU to split the functionality up into individual 

instructions than need to be fetched, decoded and the executed. Any parallelism in the 

algorithm can also be exploited by having hardware functions running concurrently. Up 

until recently any gains from doing this were achieve by converting a high level algorithm 

in to a hardware description language (HDL) such a VHDL. This is a complex process and 

higher-level languages are needed to allow integration between current design methods, 

this is what Handle-C is. 

 

1.2.1 Handel-C 
Handel-C is a language with an associated development environment DK1 developed by 

Celoxica, which was formed out of the University of Oxford in 1996 to commercialise its 

research into Handel-C. Handel-C is a C based language with extensions for hardware; it is 

aimed at compiling high-level algorithms directly to gate level hardware. It can also 

compile to VHDL for incorporation into an existing system.  

 

Handel-C can be used to design sequential programs but to gain speed improvement 

parallel constructs need to be used. Handel-C allows for the algorithm to be written 

without any knowledge of the underlying architecture which makes it a true high level 

programming language. Handel-C generates the required logic gates from the source code, 

however it works at the register transfer level. This means that each assignment is clocked 

into a register after calculation. This enables Handel-C to ensure that all assignments are 

performed in a single clock cycle. However the complexity of the assignment will affect 

the speed at which the FPGA can be run due to the combinatorial delays created by deep 

logic. Handel-C also ensures that the control logic of the language constructs adds no 

additional clock cycles to the implementation, again they add to the length of the system 

clock cycle. 
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The main language extension in Handel-C is that of the PAR statement, this enables 

several statements to be run in parallel. There is also the inclusion of I/O pin constructs, 

and port and channel constructs to enable communication between external interfaces and 

parallel process respectively. This is needed to allow the passing of data from one thread or 

process to another. Channels also allow parallel processes to synchronise with each other. 

Data types such as the signal have been added which act like wires in a hardware design. 

There are also extensions for bit manipulations including bit selection and concatenation of 

variables. 

 

Although much of ANSI-C is supported there are some restrictions: 

• No floating-point support, due to the increased gate count that floating-point 

instructions involve. 

• No recursive functions, this is due to the lack of stack and the fact that the same 

hardware would be used to perform the operation. As the depth of the function is 

not known at compile time the correct amount of hardware cannot be built. 

• Statements cannot cause side effects. This means that: 

o Local initialisations are not supported. 

o The initialisation and iteration phase of loops must be statements and not 

expressions. 

o Shortcut assignments such as +=, -=, *=, /=, %=, <<=, >>=, &=, |=, ^=, ++ 

must be stand alone statements and not part of more complex expressions 

 

There is also a limited standard library, but for the RC100 board there is a library which 

give assess to the peripherals. Handel-C also only supports integers either signed or 

unsigned, there is library functions provided to do fixed point operations, however compile 

times are faster if integers are used with the binary point dealt with by the programmer.[3] 

 

Handel-c does optimisation on code when compiling. Since compiling is from software to 

hardware benefits can be gained both from traditional software compiler optimisation 

techniques and logic optimisation techniques. This is a multi-step process involving both 

technology independent optimisation and technology specific optimisation such as; 

dedicated multiplier circuitry, fast carry chains, etc. The first step is to compile to a high-

level netlist before it is expanded to a technology specific lower-level netlist, this is 

illustrated in figure 1.1. [4] 
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Figure 1.1Compaliton flow after parsing, taken from [4] 

The compiler can perform a number of automated optimisations such as re-writing, 

conditional rewriting and common sub-expression elimination. 

 

Re-writing involves changing the gate level netlists to logical equivalents.  Logic that has 

one or more constant inputs can be simplified, and hardware that is executed but never 

connected to an external pin can be eliminated because it has on affects on the outputs. 

 

Conditional re-writing is an extension of re-writing where test patterns are applied to gates 

to find impossible conditions, as there conditions cannot exist the compiler can remove any 

circuitry that contributes to these. 

 

Common sub-expression elimination is a classic optimisation compilation technique where 

the same output is used by several expressions, rather than building two sets of hardware 

the output is routed to the two outputs. 

 

Although the Handel-C complier can make a number of other optimisation techniques it 

will not do some optimisations. This includes no attempt to dynamically reuse hardware. 

This means that it is up to the user to explicitly declare hardware for reuse by making it a 

shared function. [4] 
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1.2.2  RC100 Development Board 
The RC100 development board has a number of devices that can be controlled or accessed 

by the Spartan II FPGA. The FPGA is a 200,000 gate equivalent device with 14 block 

RAMs. The devices available are listed below 

 

• 1 Flash RAM - for storing bitfiles to program the FPGA, 64Mbits in size 

• 2 SSRAM - for storing user data, 36 bit with 256k locations 

• 1 Video output system: Video DAC & VGA connector 

• 1 Video decoding circuitry: SAA7111 decoder, s-video, composite video input 

• 1 CPLD for communicating with the parallel port 

• 7-Segment displays 

• 3 LEDs 

• 1 Main Clock Crystal 

• PS/2 Ports for mouse and keyboard interface 

• 1 Parallel Port - for connecting to the host computer 

 

The FPGA device is the centrepiece of the board and it is the main piece of reconfigurable 

logic that users can target. The FPGA has direct connections to the; two SSRAM banks, 

Flash RAM, Video DAC, Video Input Decoder, PS/2 connectors, LEDs, two 7 segment 

displays and the expansion header. The FPGA also has access to the parallel port through 

the CPLD.  

 

In my design I use the Video output system for displaying the corrected image to the 

screen, the composite input to capture images, the SSRAM for storing frames and one of 

the PS/2 ports for a keyboard that is use for adjusting variables. The parallel port is used to 

load the programs onto the FPGA. This process is done using the file transfer program 

provided with the DK1 suite, this program can be used to load programmes in to either the 

FPGA or the Flash RAM and can load images or any other data in the Flash RAM. By 

using the Flash it is possible to write code that can be loaded and run when the board is 

turned on. 
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1.3 Hardware Resources 
Besides the limitation on the number of CLBs in the FPGA there are other constrains. The 

other main constraint is memory access. Only one off chip memory address can be written 

to or read from in a clock cycle. However as the RAM address are 36 bits in length two 

pixels can be stored in one address, which reduces the required number of memory access. 

The range of functions that can be implemented on the FPGA is limited unless buffering is 

used to allow access to more than two pixels at a time.  

 

If the CLBs are configured into memory blocks they can all be access at the same time, the 

cost of this is reducing the amount of logic that can be implemented. When using Block 

RAM dual port memory can be constructed, allowing for one read and one write, or two 

read per clock cycle. This can increase the amount of on chip storage available without 

reducing the number CLBs available fro logic functions 

 

The corrected image will be displayed directly to a VGA screen, meaning the output will 

be in a raster fashion. This affects how the algorithm is developed and adds the constraint 

that a pixel needs to be outputted for every clock cycle of the FPGA. The block diagram in 

figure 1.2 illustrates how the captured image data will flow through the system.  

 

The FPGA must perform scan rate conversion because the input signal is composite PAL 

with a frame rate of 25Hz this must be processed and outputted to the VGA display at 

60Hz. To perform this conversion two banks of single port off chip RAM on the RC100 

board are used. The video decoder stream is deinterlaced and written to one RAM bank 

while two pixel values are read from the other bank and processed. When a frame has been 

written the RAM banks swap.  

 

The distortion in the image is corrected for in the FPGA as it is outputted to the display. 

This approach was taken, as opposed to writing a corrected image into memory, due to 

video decoder library producing output in two-pixel chunks that are then stored into one 

memory location. The pixels could be broken up and correction applied but they might 

need to go to different memory address adding to the complexity of the memory write 

function and requiring pixels to be buffered before writing 
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Figure 1.2 Block diagram of data flow 

Due to the physical limits, placed on the number of logic elements, time needs to be spent 

on reducing the logic required for operations. Where possible logic functions that require a 

large number of gates have been avoided by the use of bit manipulation simplification and 

look up tables. This has included the avoiding of multiplications where possible. This has 

been done by the implementation of a lookup table in block RAM. Other reductions can be 

made such are converting multiplications by powers of twos to right shifts. 

 

Due to the limited number of CLBs developing an algorithm for hardware is different to 

developing one for a software implementation. Although the underlying algorithm is the 

same, the way in which is structured is very different. In software to create speed 

improvements the code is optimised reduce the number of instructions. In programming for 

hardware implementation reducing the amount of logic to perform each operation is 

desired.  

 

Due to lack of a shared arithmetic logic unit (ALU) used in microprocessors, algorithms 

can take advantage of the true parallel nature that comes about through hardware. These 

makes true concurrent processes possible and enables the programmer to build pipelines of 

any length to improve algorithm speed.   

Spartan II 
FPGA

Video VGA  
Output 

RAM 
1MB 

RAM 
1MB 

Digitiser 

Keyboard  
Interface 
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1.4 Number representation 
When doing mathematical calculations on a PC normally the IEEE Standard 754 for 

floating-point arithmetic is used. This contains three components: a sign bit, a fraction 

field, and an exponent field, similar to scientific notation. There are single (32-bit) or 

double (64-bit) precision floating-point values.  

 

For representation of sign in digital hardware it is usual to use twos complement numbers 

however in the IEEE standard the sign bit 0 denotes a positive number and 1 denotes a 

negative number. The exponent field needs to represent both positive and negative 

exponents. To do this, a bias is added to the actual exponent in order to get the stored 

exponent. For IEEE single-precision floats, this value is 127. Thus, an exponent of zero 

means that 127 is stored in the exponent field. A stored value of 200 indicates an exponent 

of (200-127), or 73. For double precision, the exponent field is 11 bits, and has a bias of 

1023. The mantissa represents the precision bits of the number. It is composed of an 

implicit leading bit and the fraction bits. The implicit leading bit comes from the fact that 

floating-point numbers are stored in normalized form. This basically puts the binary point 

after the first non-zero digit. [7] 

 

Figure 1.3 IEEE 754 Floating Point Number construction for 32 numbers 

 

This standard can represent a large range of decimal numbers. However it is costly in terms 

of resources to implement due to the width bit length and in most DSPs and hardware-

based logic this format is not used. Either a variable floating point notation where the 

exponent and fraction bit lengths are changed to suit the implementation ore fixed-point 

notation is used.  In this the bits are treated as normal integers but there is an indication of 

were the binary point is placed within the number. This method has the advantage that 

normal arithmetic operations can be used the bits need to be shifted to be aligned to the 
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right position before calculations are done. The main disadvantage of fixed-point is that it 

has a fixed window so cannot represent very large or very small numbers. 

 

Due to the complications and large number of logic gates needed to perform floating-point 

operations in hardware, a fixed-point representation was chosen. Originally the Handel-C 

fixed-point library was used for performing arithmetic operations, however When using 

only two fixed-point operands and one fixed-point function from the Handel-C library the 

compile time was in the terms of hours rather than minutes, this made an incremental 

approach to development impossible. Therefore all variables were represented as signed or 

unsigned integers and were commented to indicate the position of the binary point. When 

arithmetic operations were performed operands were shifted to ensure alignment. Treating 

each fixed point number as a simple integer and using comments to specify what shifting 

was required though harder to debug was a lot quicker to compile.  

 

By using fixed-point numbers in Handel-C the bit length of each step can be defined to be 

different. This gives a great deal of flexibility in design and can save on the amount 

hardware used for registered outputs, as smaller registers can be constructed. The bit 

lengths used will be discussed in the implementation section. 
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1.5 Barrel distortion 
Image processing is often used to make non-contact measurements for real-time 

measurement applications. It is therefore vital to ensure that accurate measurements can be 

made from the captured images.  If an analogue camera is used it must often be of greater 

resolution and quality than is needed for the particular application in order to compensate 

for losses incurred before digitisation of the image [8]. A digital camera facilitates early 

digitisation and therefore it is less crucial to compensate for these losses.  This can lead to 

substantial cost savings since a digital camera with lower resolution can be used. However, 

the inexpensive and wide-angle lenses often used in low cost digital cameras are 

susceptible to barrel distortion, which can introduce significant errors into any 

measurements [5]. 

 

Barrel distortion occurs when the magnification at the centre of the lens is greater than at 

the edges. It is possible to use a higher quality multi-element lens system to correct for this 

but this comes at considerable additional cost to the image capture system. As this project 

is aimed at low cost consumer products such as web cameras and PXT phones this cost 

cannot be justified. Barrel distortion is primarily radial in nature, a relatively simple one 

parameter model can account for most of the distortion [6]. A cost effective alternative to 

using an expensive lens is to algorithmically correct for the distortion using the model. 

Barrel distortion is illustrated in figure 1.4 below. 

 

Figure 1.4 Distorted captured image on the left and desired image on the right. 
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2 Implementation 

2.1 Barrel Distortion Correction 
Barrel Distortion as described in the introduction is caused by a larger magnification at the 

centre of the lens than at the edges. The relationship between the distorted and undistorted 

image coordinates may be modelled by 

)1( 2
ddu krrr +=  (1) 

where ru and rd are the radial distances from the centre of the image as shown in figure 2.1 

and k parameterises the distortion. For barrel distortion a positive value of k accounts for 

the decrease in magnification with increasing radius from the centre of the image. 

 

Figure 2.1 Undistorted and Distorted image coordinate systems 

 

This model only corrects for radial distortion and does not correct for any other distortion 

caused by the lens system, such as perspective distortion. 

 

The problem with this is that the correction is in terms of the distorted image. The position 

of the pixel in the distorted image is used to calculate were the pixel should be stored in a 

corrected image. This form is unsuitable for real-time correction because it is necessary to 

produce the undistorted output pixels in raster order.  The coordinates in the undistorted 

image must be used to determine which pixel in the distorted image should be displayed. 

Instead it is desirable to have the equation in the form of 

),(

),(
2
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rkMyy
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Where M(k,ru
2) is a magnification factor that depends on the distortion, and position in the 

image. The reason for requiring ru
2 rather than ru is that as 2

u
2
uu yxr +=  and the square root 

function that would be required uses a large number of resources. Equation (1) can be 

rearranged to give 

2
du

d

kr1
1

r
rM

+
== (3) 

However this has the magnification depending on rd
2 rather than ru

2 by substituting 

Mrr ud = , M(k,ru
2) is given by 

2
u

2rkM1
1M

+
= (4) 

This can be solved iteratively by first setting M to 1, and substituted into equation (4).  

This gives a revised value of M(kru
2), which is again substituted into the equation.  This is 

iterated until M(kru
2) converges to the desired precision. It can be shown that the equation 

does converge for values within the range required (Appendix A). Figure 2.2 shows the 

resultant magnification function. As the mapping depends on the product kru
2, this avoids 

having to have a separate mapping for each k. Having a single mapping allows M(kru
2) to 

be precalculated and stored in a lookup table. The MATLAB code for calculating M is 

given in appendix B. 

Figure 2.2: Magnification factor from pixel radius 
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The coordinate system that is used of the image differs from a normal one. First the origin 

of the image is at the centre of distortion. This can be approximated to be the centre of the 

image. As the image is has its origin at the centre the magnification of the four quadrants 

will be the same. The image is then scaled to be a fixed width, by making ru
2 can be zero 

and one within a quadrant. As the correction factor k is also between zero and one, kru
2 will 

also be between zero and one. By doing this normalisation the required magnification does 

not need to be recalculated when the image size changes.  This is normalisation is archived 

by shifting the x2 and y2 bits so that they are fixed point numbers less than one. 

 

By having kru
2 between zero and one the magnification table does not need to be changed 

for different sized images, this allows the precalculation to be preformed. 

 

Figure 2.3 Normalised image 
0

-1 
f 55 

coordinates in terms of ru
1

-1 
1



A REAL-TIME FPGA IMPLEMENTATION OF A BARREL DISTORTION CORRECTION ALGORITHM 

Page 21 of 55 

 

2.1.1  Algorithm  
The algorithm can be broken up in to a number of subsections.  The system is driven 

entirely from the present scan position of the display.  Distortion correction is performed 

by using the current scan position and a magnification factor held in a look-up table to 

calculate the address of the corresponding distorted pixel that is located in video RAM.  

This pixel is read from the RAM and displayed to the screen. Figure 2.4 show a system 

diagram of how the correction algorithm interacts with the components. 

 

Distorted
Image Address

Distortion
Correction

Look up table

Video RAM Display

Undistorted
Image

Coordinate

Figure 2.4 System diagram 

The details of how the correction algorithm is implemented are given in the following 

sections. It describes how the correction is calculated and the step required to design a 

system that can run in real time. 
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xu
2 = xu

2 + xu@1

kru
2 = k(xu

2 + yu
2)

Use kru
2 to look up magnification table

M using equation (6)

xd, yd using equation (4)

xd, yd coordinate looked up in memory

Previous x2

Figure 2.5 Barrel Correction Algorithm 

 

Figure 2.5 shows the algorithm that does the correction, this works on one pixel at a time. 

Only x2 is calculated in this section, as the output is raster based y2 only needs to be 

calculated once per line.  The next step is to calculate kru
2, this is used to look up the 

magnification is the look up table. The actual magnifications then estimated. The 

magnification is multiplied by the x and y coordinates and this is used as the address for the 

pixel to be displayed to the screen. These steps will be explained in more detail in the 

following sections. 
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In the design there are several functions running in parallel. These are the keyboard 

interface, the video capture and the display sections. The ability to program parallel 

functions can increase the flexibility of the system but there needs to be communication 

between cooperating hardware blocks. In my case the video capture and the display 

sections were run in parallel but they communicated via a register to identify, which 

memory block is being written to and which was being read from.  The keyboard interface 

is used to allow the user to change the correction factor k, this is done via a register and 

will update the correction factor used in the algorithm for its next iteration. Figure 2.6 

shows how the three parallel processes communicate with each other.  

 

Video Input Keyboard
interface

Video Output
and

correction

Register to control
RAM access

Register to change
correction factor

Figure 2.6 Parallel processes communication 
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2.1.2  Screen Coordinate Calculation 
 

Using the RC100 development board the corrected image is to be displayed to a VGA 

screen in real time. The output is therefore required to be a raster scan. Therefore each row 

in the image will have a constant y and as this is constant so will y2. Due to this y2 only 

needs to be calculated one per row. This calculation can be done during the horizontal 

blanking period.  

As we scan across the screen x increments by one for each pixel in the output. This can be 

used to enable us to calculate x2 incrementally making use of the expansion: 

 

( ) 121 22 ++=+ xxx (5) 

 

therefore x2 only needs to be calculated at the start of each row, and after that the 

incremental formulate (5) can be used to calculate x2. This can be further reduced in terms 

of hardware logic by making use of the fact that multiplying by 2 is equitant to a left shift 

by 1 bit position. As one is then to be added shifting with a 1 can be done, which is taking 

x and appending 1 as the lowest bit can reduce the logic further. Substituting x@1, x with 

one appended to the end, for 2x+1 in equation 5:  

 

( ) 1@1 22 xxx +=+ (6) 

 

This equation reduces both the logic depth of the equation and the required hardware.  

As y2 and x2 are never calculated at the same time the hardware for this can be share, with 

the cost of the multiplexes required to do this. It was found that doing this had no effect on 

the number of gates that Handel-C built.  

 

The calculated x2 and y2 are then used to give ru
2 which is calculated by 

 

222 yxru += (7) 

 

this must then be multiplied by k to produce kru
2.
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As the image size is 503 by 480 pixels (due to the FPGA clock not being able to be divided 

to the correct frequency for 512 by 460) only 9 bits are required for x and y position. This 

in turn means that 18 bits are required for x2 and y2.
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2.1.3  Magnification Calculation 
As described earlier the magnification is found using a look up table, the first step in doing 

this is to find the present x2 and y2. These are summed and multiplied by the correction 

factor k (set by the user using the keyboard) to produce kru
2. To give adequate resolution 

for the required correction 10 bits are required for k. kru
2 can then be used to find the value 

in the look up table. The main problem with this is that the look up table can only hold a 

limited number of magnification values. By using only one block RAM 256 16-bit entries 

can be stored, and the top 8 bits of kru
2 can be used to address these. This will only give 8 

bits of resolution, which can be improved by applying an appropriate offset; figure 2.7 

graphs the error in magnification against kru
2. Using all the available block RAM to create 

a 2304 entry look up table does not significantly increase the resolution.  This can be 

improved by interpolation. A number of instructions must be implemented to find the 

magnification and then this must be used to calculate the pixel to be displayed. To achieve 

an output of one pixel per clock cycle a pipeline needs to be used. Both interpolation and 

pipelining are now discussed.  

Figure 2.7 Look up table magnification error 
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To improve the resolution, several steps can be taken. The first is to notice that all the 

magnification values in the area of interest are between ½ and one. This means that the 16 

bits available in the RAM can be used to represent the bottom 16 bits of a 17-bit number 

with the top bit of 1 being appended before any calculation. This does not improve the 

resolution of the value significantly because there are only 256 entries. This means that 

only the top 8 bits of kru
2 can be used. To improve the accuracy, linear interpolation 

between adjacent samples may be used. This is effective because the magnification 

function is smooth. To perform the interpolation, both the required magnification table 

entry and the next entry are looked up. The slope of the line between the two values is 

calculated and the lower bits of kru
2 can then be used to estimate the magnification at the 

intermediate point: 

 

822222 2][))]([)1]([()]([)( −××−++≈ LSBuMSBuMSBuMSBuu krkrMkrMkrMkrM (8) 

 

and illustrated in figure 2.8. 

 

Figure 2.8 Magnification using interpolation 

When the 17-bit magnification value is combined with interpolation, a resolution of 15.5 

bits can be achieved for a 16-bit precision of kru
2. This is calculated by finding the 

maximum error between the real magnification value and the estimated, converting it in to 

the equivalent number of bits require to represent the error. A plot of the error against kru
2

is given in figure 2.9. 

M
Calculate slope 

Look up M  
Using upper 
bits of Kr2

Get next M Scale based on lower 
bits of Kr2

Linear approximation 

Estimated M 
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Figure 2.9 Error in magnification using interpolation 

 

We then need to use equation (2) to determine coordinates in the distorted image. These 

are used as the address into RAM to read the pixel value to be displayed. 
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2.1.4 Coordinate Truncation 
When calculating the coordinates for the pixel location to be displayed the result is seldom 

an integer number. The corrected x and y are 10 and 9 bits in length. This is due to the top 

9 bits of x and the 9 bits of y giving the address in memory, which contains two pixels; the 

bottom bit of x selects which of these pixels is displayed. 

 

The approach that has been taken for this implementation is to truncate, so that the 

fractional component is discarded. Truncation or the alternative rounding can introduce 

substantial error in pixel location. This intern distorts lines in the image by producing 

jagged edges.  Figure 2.10 shows the effect of the use of truncation, the circles represent 

actual pixels, in (a) there is only a small error, however in (b) the pixel is a lot closer to the 

lower right pixel then the resulting top left pixel.  

 

x x

y
y

(x,y)

(x,y)

(a) (b)
 

Figure 2.10 Effect of truncation 
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2.1.5  Pipelining 
Due to the constraint of real time processing and the need to produce one pixel for each 

clock cycle, a pipeline must be constructed. This works by having all the required 

operations running in parallel each one using the result from the previous clock cycle to 

perform its operations on. Once the pipeline has been primed then one output is generated 

every clock cycle. While the pipeline is being primed, the output will not be valid. The 

length of the pipe depends on the number of operations that are required to run in parallel.  

 

As y2 is constant for a line it can be calculated in the vertical blanking period, x2 is 

calculated using the previous x2 and the fact that it is changing in a raster fashion. kru
2 can 

then be calculated and this used to find the magnification interpolation is done and the 

address of the required pixel is found. This process will have a delay of five clock cycles 

before there is output. This requires that data must be fed into the pipeline five clock cycles 

before the output is required. Starting the process 5 clock cycles before the end of the 

horizontal blanking period achieves this.  Figure 2.11 shows the algorithm written for a 

parallel approach. The bold boxes indicate registers and there names. In this each operation 

will occur on the registered output from the operation that occurred in the previous clock 

cycle. As x will have incremented by four by the time it is used to calculate the required 

pixel address either four needs to be subtracted from it, or the original x needs to also be 

delayed with four registers. The subtraction was the chosen approach as the registers use 

more resources than a subtraction. 

 

The notations in figure 2.8 on the connecting arrows indicate the data widths of the 

operands, whether it is signed and were the binary point is. As described earlier by using a 

variable bit length approach the amount of hardware needed can be reduced. This can be 

achieved by truncating the results of operations before they are registered. The length of 

each operand depends on the level of precision required. 
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Figure 2.11: Pipeline for coordinate calculation 
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3 Results 
The distortion correction algorithm has been successfully implemented and tested on the 

RC100 development board, figure 3.1 shows a distorted image and figure 3.2 the corrected 

image.  The utilisation of the FPGA used on the RC100 development board is shown in 

table 3.1. 

Table 3.1: Resource utilisation of device (XC2S200) 

 CLBS 

(1172 total) 

Block RAM 

(14 total) 

Keyboard 

interface 

129 (11%) 1 

Video decoder / 

VGA 

235 (20%) 4 

Correction 

algorithm 

270 (23%) 1 

Total 642 (54%) 6 (42%) 

The correction algorithm uses 23% of the logic resources of the FPGA and one of the 

block RAM for the look up table. The majority of the logic resources are used to 

implement the large multipliers used. If this were implemented on an FPGA such as the 

Virtex-II that incorporates embedded multipliers the resource utilisation due to the 

multipliers would be significantly reduced. 

 

The other resources used are not directly part of the correction algorithm but are used to 

support it. The keyboard interface is only used to allow the correction factor to be changed 

so if a fixed lens configuration was to be used this could be removed, saving 11% of the 

resources. The Video decoder is required for capture and storing to memory. The VGA 

section is required to control the display. 

 

Although it cannot be seen clearly in figure 3.1b there are some jagged edges in the image, 

this is cased by the truncation processes and contouring caused by a change from one 

magnification value to the next. The algorithm used was also implemented in MATLAB 

and produced similar results. 
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Figure 3.1. Distorted Image 

 

Figure 3.2. Corrected Image  
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4 Future work 
It can be seen form the resource utilisation table that almost half of the FPGA is not 

utilised. This space can be used to implement bilinear interpolation between pixels to 

remove the effects of coordinate truncation, and improve the quality of the corrected 

image. This requires the used of row buffering to allow a number of pixels to be accessed 

in one clock cycle and is discussed in [7]. 

 

An investigation in to whether a CMOS optical sensor could be used as the memory 

element for the distorted image need to be done. If this can be successfully implemented an 

FPGA could be placed between the sensor element and a memory bank with the barrel 

distortion being corrected for before the image is stored. This would then enable other 

image processing functions to be done on the corrected image by either another FPGA or a 

microprocessor. If this is feasible then for the application that this is aimed at, low cost 

web and PXT cameras the presented algorithm with only minor changes could be 

implemented on an FPGA that could be incorporated into the device to ensure corrected 

images before they were stored in memory. 

 

As the barrel distortion has been corrected other image processing operations could be 

investigated, due to the probable need for line buffering the size of the present Spartan-II 

chip on the RC100 board is likely to limit the size and type of operations that can be 

implemented.  

 

Handel-C tries to enable hardware to be programmed like software, however due to the 

nature of hardware design a software approach is almost impossible. Although a C 

program may be written to implement an image processing algorithm it cannot easily be 

converted to a Handel-C program when real time operation is required. Most of the effort 

involved in this project was in designing the real time hardware required, such as pipeline 

design. This means that at present an image processing expert with limited hardware 

knowledge would have difficulty in developing FPGA systems. Work needs to be done on 

making the process of converting from a software design to hardware a less complex task.  
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5 Conclusions 
The barrel correction algorithm has been successfully implemented on a FPGA using the 

RC100 development board and Handel-C. 

 

To allow the algorithm to be preformed buffering of the image is required, for simplicity a 

whole frame is buffered in to RAM 

 

The conversion from a software algorithm to one that runs in hardware in real-time 

presents a number of difficulties. The main one is the inability to do offline processing but 

this is inherent in all real time applications. Due to the construction of the RC100 board 

only one off chip memory access is possible per clock cycle (per RAM), this means that if 

any complex pixel manipulation is to be done buffering of the image is required. In my 

algorithm this could be avoid as only the address of the pixel is calculated then retrieved 

and directly displayed.   

 

The real-time requirement makes the construction of a pipeline architecture essential, 

reconfigurable hardware allows this to be customised to the desired length and complexity.  

For the hardware to be able to be mapped to the target device there is a need to minimise 

logic gate count.   

 

The use of a look-up table with interpolation can reduce the complexity of the hardware 

design without significant loss of precision compared to calculating values with hardware 

at run-time. 

 

Even though Handel-C was designed to raise the level of abstraction for hardware design 

and shift the focus to algorithmic design, it has been beneficial to maintain a data flow 

approach at the register transfer level.  The data flow approach has many advantages when 

it comes to the design of pipelines as it makes the breaking up of an algorithm into separate 

stages of a pipeline conceptually simpler by using registers. 
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Appendix A: Convergence of Magnification 

The magnification factor is calculated iteratively. We need to show that this iteration 

converges. The condition for the iteration to converge is that the slope of the line for M 

must be between –1 and 1. This is illustrated graphically in figure 1, case (a) is when the 

slope of the line is positive and less than one and case (b) is when the slope of the line is 

less than negative one: 

(a) (b)
 

Figure 1.1 Graphical Convergence 

The magnification required to corrected for barrel distortion can be shown to be 

221
1

ukrM
M

+
= (a1) 

where k is the required correction and ru
2 is the radial distance from the centre of the 

image. 

 

The slope can be found by differentiating with respect to M: 
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Equation (a1) can be substituted into (a2) resulting in 
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For convergence –1 < 232 ukrM− <1 rearranging (a1) gives 
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= , the iteration will converge for 4

27
4 2 <<− ukr provided the starting 

point is sufficiently close to the final value.  

 

This will be satisfied if the slope is also between –1 and 1 at the starting point 

The iteration is always stated at M =1. Substituting this into equation (a2) gives 

–1< 
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kr

+

−
<1 (a4) 

 

This is plotted in figure 1.2 between –4/27 and 4,showing that this condition is meet.  
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Figure 1.2 Convergence of M 

The full condition for graphical converges to be meet also requires that the function is 

continuous, which it is, and that the slope for all points visited is between –1 and 1, not just 

the start and finish points. This means that there should be no turning points, the second 

derivative can be found for (a1) 
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(a5) 

Since 3
2 1

M
Mkru

−
= , equation (a5) becomes 
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(a6) 

 

which means that there is a turning point at M=1 or kru
2 = 0, for M <1 it has a negative 

concavity meaning that for 0 < kru
2 <1, our area of interest there are no turning points 

indicating that the slope of all visited points are between –1 and 1. 
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Appendix B: MATLAB Magnification Table 

clc 
close all 
k =1; 
m =[]; 
rd2 =[]; 
space = 1/256; %set steps to 256 
 
ru2 =[0:space:1]; %getting ru from 0 to 1 with 256 steps 
 
m= 1./(1 + k.*ru2) ; %calculate m 
 
rd2 = m.^2 .* ru2; 
%rd2old =rd2; 
i =1; 
%always run if first interation 
diff =2^16; 
%run until the min and max differece of old to newless than 2^-20 
while (max(diff) >=2^-20)  
 m = 1./(1 + k*rd2); 
 rd2old = rd2; 
 rd2 = m.^2 .* ru2; 
 diff = abs(rd2 -rd2old); 
 i = i + 1; 
end 
x =i; 
ru2; 
m; 
rd2 ; 
mcoder =floor(m*2^17); 
ms = floor(m*2^17)-2^16; 
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Appendix C: MATLAB Magnification Error Code 

clc 
close all 
k =1; 
m =[]; 
rd2 =[]; 
space = 1/256; %set steps to 256 
 
ru2 =[0:space:1]; %getting ru from 0 to 1 with 256 steps 
 
m= 1./(1 + k.*ru2) ; %calculate m 
 
rd2 = m.^2 .* ru2; 
%rd2old =rd2; 
i =1; 
%always run if first interation 
diff =2^16; 
%run until the min and max differece of old to newless than 2^-20 
while (max(diff) >=2^-20)  
 m = 1./(1 + k*rd2); 
 rd2old = rd2; 
 rd2 = m.^2 .* ru2; 
 diff = abs(rd2 -rd2old); 
 i = i + 1; 
end 
x =i; 
ru2; 
m; 
rd2 ; 
 
ms = floor(m*2^17); 
 
rd2b = [0:1/2^16:1]; 

 ru1 = sqrt(rd2b) .* (1 + rd2b); 
 ru = ru1(find(ru1<=1)); 
 ru2b = floor(ru.^2*2^8); 
 ru2s = floor((ru.^2 * 2^8 - ru2b)*2^8); 
 mreal = (sqrt(rd2b)./ru1); 
 mreal2 = mreal(1:length(ru)); 
 
mlook = ms(ru2b+1); 

 mdiff = ms(ru2b+1) -ms(ru2b+2); 
 mtimes = floor(mdiff .* ru2s)/2^8; 
 minter = floor(mlook - mtimes); 
 diff = mreal2 - minter/2^17; 
 nondiff = (mreal2-mlook/2^17); 
 

ms2 = floor(m*2^17) -2^16; 
 mcoder = floor(m*2^17); 
 mr = mreal2;%*2^17; 
 

error = (mr - mlook/2^17); 
 

error1 = (mr - minter/2^17); 
 

sumerror1=0; 
 sumerror=0; 
 i=1; 
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 while i<length(error) 
 i=i+1; 
 sumerror = sumerror + abs(error(i)); 
 sumerror1 = sumerror1 + abs(error1(i)); 
 end 
 maxer = max(abs(error)) 
 totale = sumerror 
 avge = sumerror/length(error) 
 avge1 = sumerror1/length(error1) 
 maxer1 = max(abs(error1)) 
 totale1 = sumerror1 
 
LUTbits_resolution = 17 - log2(maxer*2^17) 

 Interplatebits_resolution = 17 - log2(maxer1*2^17) 
 
figure(1) 

 axes('FontSize', 12) 
 plot(ru.^2,error) 
 ylabel('Error in estimated magnification','FontSize', 12) 
 xlabel('kr_u^2','FontSize', 12,'FontAngle','italic' ) 
 
figure(2) 

 axes('FontSize', 12) 
 plot(ru.^2,error1) 
 ylabel('Error in estimated magnification','FontSize', 12) 
 xlabel('kr_u^2','FontSize', 12,'FontAngle','italic' ) 
 



A REAL-TIME FPGA IMPLEMENTATION OF A BARREL DISTORTION CORRECTION ALGORITHM 

Page 42 of 55 

Appendix D: MATLAB Simulation of Implementation 
% Magnification Table must be run first to get ncoder array 
I=imread('WARPED.BMP');% disbuild.bmp');% 
imshow(I) 
[xmax,ymax]=size(I); 
xa=[]; 
B=[]; 
k =1.28 
y =-1*(ymax/2) 
xc = xmax/2; 
yc = ymax/2; 
for yi = 1 :ymax 
 x = -1*(xmax/2); 
 y2 = y^2; 
 y = y +1; 
 for xi = 1 :xmax 
 x2 = x^2;  %pipe 1 
 x =x+1; 
 kr2 = (k*(x2 +y2)/2^12); %pipe 2 
 krtop8 = floor(kr2/2^8); 
 krbot = (kr2 -krtop8*2^8); 
 

%pipe 3 
 if krtop8+1 >length(mcoder) 
 m1 =89434; 
 else 
 m1 =mcoder(krtop8+1); 
 end 
 if krtop8+2 >length(mcoder) 
 m2 =89334; 
 else 
 m2 = mcoder(krtop8+2); 
 end 
 

%pipe 4 
 m = (m1 - ((m1 -m2)*krbot))/2^17; 
 

%pipe 5 
 xf = floor((m*x) + xc); 
 yf = floor((m*y) + yc); 
 

%check if out of array index 
 if xf >xmax 
 xf =xmax; 
 end 
 if xf <1 
 xf =1; 
 end 
 if yf <1 
 yf =1; 
 end 
 if yf>ymax 
 yf=ymax; 
 end 
 B(xi,yi) =I(xf,yf); 
 end 
end 
 
% make array 8 bit 
X8 = uint8(round(B - 1)); 
figure(2) 
imshow(X8) 
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Appendix E: Handel-C Implementation Code

Main Code

/* Set the clock divisor and board type
Clock divide of 4 is 503 by 480 display use 251
Clock divide by 3 is 670 by 480 */

#define RC100_CLOCK_DIVIDE 4
#define RC100_BOARD

/* Include the relevant headers */
#include <RC100.h>
#include <stdlib.h>
#include "ASCIIChars.hch"
#include "tables.hch"

//define the centre of the image distortion
#define xc 251
#define yc 240

/* Function Prototypes */
macro proc WriteBackBuffer( LineCount, PixelCount, Value, ActiveRAM);
macro proc DrawVideoOutputToRAM(Decoder, ActiveRAM);
macro proc Display(Video, ActiveRAM, Keyboard);

//uses fact that (x+1)^2 = x^2 + 2x +1 = x^2 + x<<1 +1
macro expr squred( sa,a) = (unsigned)((signed)sa + (adjs(a,width(sa)-1)@(signed 1) 1));
macro expr myadd(a1,a2) = a1 + a2;

void main(void)
{

// video stuff
SAA7111_DECODER Decoder;
RC100_VGA_DRIVER Video;

RC100_PS2_KEYBOARD Keyboard;
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unsigned 1 ActiveRAM; /* Flag to indicate which RAM bank is the front buffer*/

do
{

par
{

RC100PS2KeyboardDriver(&Keyboard, RC100_KEYBOARD_PORT,

(RC100_K_ASCII_CODES|RC100_K_TRAP_KEY_RELEASE|RC100_K_USE_LEDS));

RC100VideoDriver(&Video);
RC100VideoDecoder(&Decoder);
DrawVideoOutputToRAM(&Decoder, &ActiveRAM);
Display(&Video, &ActiveRAM, &Keyboard);

}
}while(1);

}

/* Write the Video camera output to the back buffer*/
macro proc DrawVideoOutputToRAM(Decoder, ActiveRAM)
{

unsigned 10 LineCount, PixelCount;
unsigned 33 Value;

macro expr Command(x) = x[32];
macro expr Token(x) = x[31:30];
macro expr Location = ((LineCount)<-9)@(PixelCount\\1);

par
{

do
{

Decoder->VideoOutput ? Value;
if(!Command(Value))
{

/* Write it to the correct RAM and update the pixel counter*/
par
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{
if (LineCount[9])
{

delay;
}
else
{

par
{

// data arrives in two pixel chunks
if(*ActiveRAM == 0)
{
RC100WriteSSRAM1( Location, 0 @ Value);
}
else
{
RC100WriteSSRAM0( Location, 0 @ Value);
}

PixelCount = PixelCount+2;
}

}
}

}
else
{

/* Set the internal registers and swap buffers according to
* which token arrived. The cases are defined in the RC100.h
* header file */
switch(Token(Value))
{

case SAA7111_START_LINE_TOKEN:
par
{

PixelCount = 0;
LineCount = Value[9:0];

}
break;
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case SAA7111_START_FRAME_TOKEN:
par
{

PixelCount = 0;
LineCount = 0;
*ActiveRAM = ~(*ActiveRAM);

}
break;

default:
delay;
break;

}
}

}while(1);
}

}

/*
* VGA Display Generation
*/
macro proc Display(Video, ActiveRAM, Keyboard)
{

//varables used in pipline
unsigned 36 TempRegister;
unsigned 18 Location;

unsigned 11 Input; //keyboard input
unsigned 10 correctionfactor; //k

unsigned 16 kr2;
unsigned 16 mag ;
unsigned 16 interpmag1,interpmag2;
unsigned 8 interscale;
unsigned 18 sx;
unsigned 18 sy;
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signed 10 x,y;
unsigned 10 scalex;
unsigned 9 scaley;

macro expr CurrentOutput = (scalex[0] ? TempRegister[15:0]:TempRegister[31:16]) ;

correctionfactor = 0;
par
{
/* Assign to the video output every cycle*/
do
{

Video->Output = RC100Convert565to888(CurrentOutput);

}while(1);

do
{

/* Calcualte the x^2 x^2 use this to work out the
* r^2 and the kr2 */

if ( Video->ScanX == RC100VisibleCols)
{

par
{

//this changes cordinate system
sx = xc*xc; //at the end of each line reset x^2 to max value
x = -xc; //and make x the value at start of line

}
if (!Video->VBlank){

//update the y value but only not in the vblack line

par
{ // 2 lines equlivant to y*y

sy = squred(sy,y);
y = myadd(y,1);//y = y +1;
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}
}else
if (Video->ScanY == RC100VisibleLines)
{

par
{ // at the bottom of screen reset y^2 and y

sy = yc*yc;
y = -yc;

}
}else delay;

}
else if (Video->Visible)
{ par

{
//pipeline 1

sx = squred(sx,x);
x = myadd(x,1);//x = x +1;

//pipeline 2
//calculate kr2
kr2 = ((0@(sx + sy))*(0@correctionfactor))\\12;

//pipeline 3
//get mag values
interpmag1 = Mtable.read1[kr2[15:8]];
//include case to protect if outside array index

interpmag2 =((kr2[15:8]+1)!=0)Mtable.read2[kr2[15:8]+1]:23928;
interscale = kr2[7:0]; //kr2[19:12]

//pipeline 4
//******Magnifiaction estimation
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mag = (interpmag1 - ((0@(interpmag1-interpmag2))*(0@interscale))\\8);

//pipeline 5
//calculate the x and y to look cu in memory

scalex =(unsigned)(xc + (((0@(signed)((unsigned 1)1@mag))*adjs(x-4,27))\\17)+19);
scaley =(unsigned)(yc + ((0@(signed)((unsigned 1)1@mag))*adjs(y,27))[25:17]);
// taking in to accoun the fact that only bottom bits used for y(unsigned)(yc + y)<-9;

//use the fact that the bottom bit of x selects the
//pixel from the memory address to be displayed
Location = scaley@(scalex\\1);

// Display the front buffer
if(*ActiveRAM == 0)
{
RC100ReadSSRAM0(Location, TempRegister);

}
else
{
RC100ReadSSRAM1(Location, TempRegister);
}

}
}else delay;

}while(1);

do
{

// wait until a character can be read from the input
*Keyboard->ReadChannel ? Input;

// chage the correction depending on input
switch(Input)
{

case ASCII_RIGHT_ARROW:
correctionfactor = correctionfactor + 10;
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break;

case ASCII_LEFT_ARROW:
correctionfactor =correctionfactor -10;
break;

case ASCII_r:
correctionfactor = 0;
break;

case ASCII_f:
correctionfactor = 1023;
break;
default:
delay;
break;

}
}while(1);

}
}
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Look up table 

//this containes the magnification look up table 
//Christopher Johnston modified 11/9/2003 
 

static mpram Mtype 
{

ram <unsigned 16> read1[256]; 
 rom <unsigned 16> read2[256]; 
}Mtable ={ 
65535,65029,64535,64051,63578,63115,62661,62217, 
61781,61355,60936,60525,60122,59726,59337,58955, 
58580,58211,57848,57491,57140,56794,56454,56119, 
55790,55465,55145,54830,54519,54213,53911,53613, 
53319,53029,52743,52461,52182,51907,51636,51368, 
51103,50842,50583,50328,50076,49826,49580,49336, 
49096,48857,48622,48389,48159,47931,47705,47482, 
47262,47043,46827,46613,46401,46191,45984,45778, 
45574,45373,45173,44975,44779,44585,44392,44202, 
44013,43825,43640,43456,43274,43093,42914,42736, 
42560,42385,42212,42040,41870,41701,41534,41367, 
41203,41039,40877,40716,40556,40398,40240,40084, 
39929,39776,39623,39471,39321,39172,39024,38877, 
38731,38586,38442,38299,38157,38016,37876,37737, 
37599,37461,37325,37190,37056,36922,36789,36658, 
36527,36397,36267,36139,36011,35885,35759,35634, 
35509,35385,35263,35140,35019,34898,34779,34659, 
34541,34423,34306,34190,34074,33959,33844,33731, 
33618,33505,33393,33282,33172,33062,32952,32844, 
32736,32628,32521,32415,32309,32204,32099,31995, 
31891,31788,31686,31584,31483,31382,31281,31181, 
31082,30983,30885,30787,30690,30593,30497,30401, 
30305,30210,30116,30022,29928,29835,29742,29650, 
29558,29467,29376,29285,29195,29106,29016,28928, 
28839,28751,28664,28576,28490,28403,28317,28231, 
28146,28061,27977,27893,27809,27725,27642,27560, 
27477,27395,27314,27233,27152,27071,26991,26911, 
26831,26752,26673,26595,26516,26439,26361,26284, 
26207,26130,26054,25978,25902,25827,25751,25677, 
25602,25528,25454,25380,25307,25234,25161,25089, 
25016,24945,24873,24801,24730,24659,24589,24519, 
24449,24379,24309,24240,24171,24102,24034,23966  
 
}with { block =1, 
 westart =2, 
 welength = 1, 
 rclkpos ={1.5}, 
 wclkpos ={2, 3}, 
 clkpulselen = 0.5 
 };  
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Keyboard Support Library 

/* 
**************************************************************** * 
* *
* Project   :   RC100 Support Libraries                            * 
* Date      :   16 JAN 2001                                         * 
* File      :   ASCIIChars.h                                  * 
* Author    :   SC                                                 * 
* *
* Description:                                                      * 
* This header contains RC100 key definitions for a UK Keyboard    * 
* when used in the ASCII mode.                                      * 
* *
* Date         Version  Author  Reason for change                  * 
* 16 JAN 2001   1.00    SC      Created.                           * 
* 10 APR 2001   1.01    SC      Added more definitions.            * 
* 26 APR 2001   1.02    SC      Removed Function keys.       * 
* 11 MAR 2003 2.00 CJ  Make it work on RC100 & US keys* 
* modified by Christopher Johnston on the 11/3/2002    * 
* adding of letters and the correction of arrows    * 
****************************************************************/ 
 
#ifndef __CELOXICA_ASCII_LIBRARY_HEADER__ 
#define __CELOXICA_ASCII_LIBRARY_HEADER__ 
 

/* 
 *letters 
 */ 
#define ASCII_A      0x41 
#define ASCII_B      0x42 
#define ASCII_C      0x43 
#define ASCII_D      0x44 
#define ASCII_E      0x45 
#define ASCII_F      0x46 
#define ASCII_G      0x47 
#define ASCII_H      0x48 
#define ASCII_I      0x49 
#define ASCII_J      0x4a 
#define ASCII_K      0x4b 
#define ASCII_L      0x4c 
#define ASCII_M      0x4d 
#define ASCII_N      0x4e 
#define ASCII_O      0x4f 
#define ASCII_P      0x50 
#define ASCII_Q      0x51 
#define ASCII_R      0x52 
#define ASCII_S      0x53 
#define ASCII_T      0x54 
#define ASCII_U      0x55 
#define ASCII_V      0x56 
#define ASCII_W      0x57 
#define ASCII_X      0x58 
#define ASCII_Y      0x59 
#define ASCII_Z      0x5a 
 
#define ASCII_a      0x61 
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#define ASCII_b      0x62 
#define ASCII_c      0x63 
#define ASCII_d      0x64 
#define ASCII_e      0x65 
#define ASCII_f      0x66 
#define ASCII_g      0x67 
#define ASCII_h      0x68 
#define ASCII_i      0x69 
#define ASCII_j      0x6a 
#define ASCII_k      0x6b 
#define ASCII_l      0x6c 
#define ASCII_m      0x6d 
#define ASCII_n      0x6e 
#define ASCII_o      0x6f 
#define ASCII_p      0x70 
#define ASCII_q      0x71 
#define ASCII_r      0x72 
#define ASCII_s      0x73 
#define ASCII_t      0x74 
#define ASCII_u      0x75 
#define ASCII_v      0x76 
#define ASCII_w      0x77 
#define ASCII_x      0x78 
#define ASCII_y      0x79 
#define ASCII_z      0x7a 
 
/* 
 * Control Codes 
 */ 
 
#define ASCII_SPACE     0x20 
#define ASCII_BACKSPACE             0x08 
#define ASCII_TAB                   0x09 
#define ASCII_ENTER                 0x0d 
#define ASCII_ESCAPE                0x1b 
 
#define ASCII_ALT_BACKSPACE         0x108 
#define ASCII_ALT_TAB               0x109 
#define ASCII_ALT_ENTER             0x10d 
#define ASCII_ALT_ESCAPE            0x11b 
 
#define ASCII_CTRL_BACKSPACE        0x208 
#define ASCII_CTRL_TAB              0x209 
#define ASCII_CTRL_ENTER            0x20d 
#define ASCII_CTRL_ESCAPE           0x21b 
 
#define ASCII_CTRL_ALT_BACKSPACE    0x308 
#define ASCII_CTRL_ALT_TAB          0x309 
#define ASCII_CTRL_ALT_ENTER        0x30d 
#define ASCII_CTRL_ALT_ESCAPE       0x31b 
 

/* 
 * Arrow Keys 
 */ 
#define ASCII_LEFT_ARROW            0xda 
#define ASCII_DOWN_ARROW            0xdb 
#define ASCII_RIGHT_ARROW           0xdc   
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#define ASCII_UP_ARROW              0xdd 
 
#define ASCII_ALT_LEFT_ARROW        0x5da 
#define ASCII_ALT_DOWN_ARROW        0x5db 
#define ASCII_ALT_RIGHT_ARROW       0x5dc   
#define ASCII_ALT_UP_ARROW          0x5dd 
 
#define ASCII_CTRL_LEFT_ARROW       0x6da 
#define ASCII_CTRL_DOWN_ARROW       0x6db 
#define ASCII_CTRL_RIGHT_ARROW      0x6dc   
#define ASCII_CTRL_UP_ARROW         0x6dd 
 
#define ASCII_CTRL_ALT_LEFT_ARROW   0x7da 
#define ASCII_CTRL_ALT_DOWN_ARROW   0x7db 
#define ASCII_CTRL_ALT_RIGHT_ARROW  0x7dc   
#define ASCII_CTRL_ALT_UP_ARROW     0x7dd 
 

/* 
 * Editing Keys 
 */ 
#define ASCII_INSERT                0x4d0 
#define ASCII_HOME                  0x4d1 
#define ASCII_END                   0x4d2 
#define ASCII_PAGE_UP               0x4d3 
#define ASCII_PAGE_DOWN             0x4d4 
#define ASCII_DELETE                0x7f 
 
#define ASCII_ALT_INSERT            0x5d0 
#define ASCII_ALT_HOME              0x5d1 
#define ASCII_ALT_END               0x5d2 
#define ASCII_ALT_PAGE_UP           0x5d3 
#define ASCII_ALT_PAGE_DOWN         0x5d4 
#define ASCII_ALT_DELETE            0x17f 
 
#define ASCII_CTRL_INSERT           0x6d0 
#define ASCII_CTRL_HOME             0x6d1 
#define ASCII_CTRL_END              0x6d2 
#define ASCII_CTRL_PAGE_UP          0x6d3 
#define ASCII_CTRL_PAGE_DOWN        0x6d4 
#define ASCII_CTRL_DELETE           0x27f 
 
#define ASCII_CTRL_ALT_INSERT       0x7d0 
#define ASCII_CTRL_ALT_HOME         0x7d1 
#define ASCII_CTRL_ALT_END          0x7d2 
#define ASCII_CTRL_ALT_PAGE_UP      0x7d3 
#define ASCII_CTRL_ALT_PAGE_DOWN    0x7d4 
#define ASCII_CTRL_ALT_DELETE       0x37f 
 

/* 
 * Special Keys 
 */ 
#define ASCII_PRINT_SCREEN          0x4d6 
#define ASCII_SCROLL_LOCK           0x4d7 
#define ASCII_NUM_LOCK              0x4d8 
#define ASCII_BREAK                 0x4d9 
 
#endif //__CELOXICA_ASCII_LIBRARY_HEADER__ 
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