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Welcome to the special issue on field programmable gate ar-
rays (FPGAs). FPGAs are becoming an increasingly impor-
tant part of embedded systems, as the collection of papers in
this issue illustrates.

“An overview of reconfigurable hardware in embedded
systems” provides a comprehensive overview of the state-of-
the-art use of reconfigurable hardware in embedded systems.
A detailed discussion of the use of FPGAs for application ar-
eas such as encryption, software-defined radio, and robotics
is provided. Additionally, a concise assessment of design is-
sues and current design tools is included. A sizable collection
of citations provides a handy reference for newcomers to the
field.

The remaining papers address applications and tools for
embedded systems design. The applications presented here
are typical of the spectrum of FPGA applications. They
fall into the categories of multimedia processing, including
video, image and speech processing, as well as communica-
tions applications.

The implementation of an MPEG-4 image encoder using
a scalable number of Altera NIOS soft processors is presented
in “Scalable MPEG-4 encoder of FPGA multiprocessor SOC.”
An image is partitioned so that each processor receives a hor-
izontal slice of the image. The author’s own on-chip inter-
connection network is used to connect the soft processors.
The authors demonstrate a significant application speedup as
additional soft processors are added to the FPGA platform.

In “A real-time wavelet domain video denoising imple-
mentation in FPGA,” the authors present a two-FPGA so-
lution for performing video denoising via a 3D (two spatial
and one temporal dimension) wavelet filter. By careful con-
sideration of the algorithm, data movement, and pipelining,
a complete and complex image processing pipeline is pro-
duced.

In “A dynamic reconfigurable hardware/software archi-
tecture for object tracking in video streams,” the authors
present a feature tracker that has been implemented on an
FPGA. The authors focus on choosing an algorithm that is
well matched to reconfigurable hardware, hardware/software
partitioning, and efficient use of memory structures. Their
implementation, which runs faster than a software-only so-
lution, has applications for mobile autonomous platforms.

The paper “Speech silicon: an FPGA architecture for real-
time hidden Markov model-based speech recognition” de-
tails the implementation of an FPGA SoC that can perform
real-time speech recognition of medium-sized speech vocab-
ularies. This pipelined approach maximizes the throughput
by minimizing the amount of required control circuitry. The
FPGA implementation of each part of the pipeline is care-
fully documented to demonstrate the benefits of FPGA spe-
cialization. FPGA floorplanning plays an important role in
achieving real-time performance.

A common application for FPGAs is image processing al-
gorithms. In “A visual environment for real-time image pro-
cessing in hardware (VERTIPH),” the authors propose a new
tool for designing image processing implementations on FP-
GAs. The proposed tool aims to improve the productivity of
designers targeting FPGAs for their image processing algo-
rithms, and provides visual information for the timing and
structure of the implementation.

In “FPGA-based communications receivers for smart an-
tenna array embedded systems,” the authors consider the de-
sign of adaptive receivers on FPGAs. The receivers can sup-
port an array of antennas, and make use of adaptive algo-
rithms to change parameters depending on the environment.
This approach is particularly good at reducing the power re-
quired to receive signals.

An interesting aspect of embedded systems using FPGAs
is the use of both CPUs and reconfigurable logic in the same
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system; and two papers in this issue address tools for sup-
porting hardware/software codesign.

The first paper is “Modeling and design of fault-tolerant
and self-adaptive reconfigurable networked embedded sys-
tems.” In traditional mixed hardware/software systems, the
designer picks which resources will support which tasks.
In this paper, the authors explore a different approach—
dynamic movement between these resources. This paper de-
scribes a framework for implementing a fault-tolerant system
containing FPGAs and processors. Tasks can be dynamically
bound to hardware or software, and support for checkpoint-
ing and rollback is provided.

“MOCDEX: multiprocessor on-chip multiobjective de-
sign space exploration with direct execution” supports the
design of multiprocessor systems on a chip. The processors
here are MicroBlaze soft-cores on a Xilinx Virtex chip. Four
are used to implement an image filtering application. The
contribution of this paper is in the use of a multiobjective
evolutionary algorithm to optimize the design of each pro-
cessor. The optimization criteria chosen are number of logic
slices, amount of block RAM and number of cycles. Real
FPGA implementations are used in the evaluation phase of
the algorithm.

Another important aspect of tools for embedded sys-
tems is energy estimation and power minimization. Two pa-
pers in this issue address this problem. “Rapid energy esti-
mation for hardware-software codesign using FPGAs” out-
lines the design and implementation of a high-level energy
estimation approach for combined hardware/software de-
signs mapped to FPGAs. The FPGA design includes both a
soft processor and custom application hardware. Cosimula-
tion of the hardware and software is performed to determine
software instruction usage and hardware switching activities.
This information is then used by low-level instruction-level
and hardware models to estimate energy consumption. A
6000x speedup in energy estimation time is achieved versus
synthesis-based approaches with a loss of about 10% energy
estimation accuracy.

Power consumption in an embedded system is often the
crucial design constraint. Although research efforts have de-
veloped CAD algorithms to replace vendor tools to perform
power optimization, real designers are still reliant on the
vendor’s tools. The paper “FPGA dynamic power minimiza-
tion through placement and routing constraints” takes a dif-
ferent track, showing that by carefully devising placement
constraints, power reductions in a Xilinx FPGA are possible
within the vendor’s tool suite. A number of schemes for de-
vising these placement constraints are considered, and over-
all achieve approximately a 10% power savings.

This collection of papers represents a good overview of
active research in the field of reconfigurable hardware in em-
bedded systems. We hope you enjoy this special issue.

Miriam Leeser
Scott Hauck

Russell Tessier
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1. WHY USE RECONFIGURABLE HARDWARE
IN EMBEDDED SYSTEMS?

Reconfigurable hardware (RH) provides a flexible medium
to implement hardware circuits. The RH resources are con-
figurable (and generally reconfigurable) post-fabrication, al-
lowing a single-base hardware design to implement a va-
riety of circuits. The hardware itself is composed of a set
of logic and routing resources controlled by configuration
memory. This memory is frequently implemented as SRAM
cells, though flash RAM and other technologies are also pos-
sible. (Some FPGAs employ anti-fuses as a configuration
medium [1, 2]. However, because these devices are essen-
tially one-time programmable, they are not reconfigurable,
and are thus not the focus of this article.) These memory cells
(and their stored values in particular) affect the functionality
of both routing and logic. In the routing architecture, a cell
may control whether or not two wires are electrically con-
nected, or provide a multiplexer select input. In logic, the
cell may control the function of an ALU, or implement logic
equations in the form of a lookup table (LUT), which is the
most common logic resource in field-programmable gate ar-
rays (FPGAs).

Essentially, circuits are decomposed into small subfunc-
tions implemented in LUTs or other logic resources in the
RH, and the routing resources are configured to electrically
connect the logic resources to match the structure of the tar-
get circuit. Writing a new set of values into the configuration,

memory reconfigures the hardware to implement a different
circuit. Complex RH designs may also contain communica-
tion structures and processor cores that may or may not be
reconfigurable.

Embedded systems often have stringent performance
and power requirements, leading designers to incorporate
special-purpose hardware into their designs. Hardware-
based implementations avoid the instruction fetch/decode/
execute overhead of traditional software execution, and use
resources spatially to increase parallelism. In many embed-
ded applications, such as multimedia, encryption, wireless
communication, and others, highly repetitive parallel com-
putations well-suited to hardware implementation represent
a significant fraction of the overall computation required by
the system [3, 4].

Unfortunately, application-specific integrated circuit
(ASIC) implementation is not feasible or desirable for all cir-
cuits. One key problem is that the non-recurring engineering
costs (NREs) of ASICs have been increasing dramatically. A
mask set for an ASIC in the 90 nm process cost about $1M
[5]. Previously, using FPGAs as ASIC substitutes was only
cost-effective in low-volume applications. FPGAs have high
per-unit costs, which are essentially an amortization of the
FPGA NREs themselves over all customers for those chips.
However, as ASIC NREs rise and FPGAs sell in higher vol-
umes, the ASIC NREs begin to outweigh the per-unit cost
of FPGAs for higher-volume applications, shifting the bal-
ance towards FPGAs [6]. Especially considering the flexibility
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Figure 1: Reconfigurable computing implements compute-intensive application kernels (a) as hardware in RH and the remaining code in
software on a CPU (b). Run-time reconfiguration allows RH to implement circuits that would otherwise not fit simultaneously (c).

of RH to accommodate new circuitry for bugfixes, protocol
updates, or new advances, expensive and fixed-design ASIC
technology becomes less appealing.

Furthermore, devices traditionally categorized as embed-
ded systems, such as PDAs (personal digital assistants) and
cellular phones, are becoming increasingly multipurpose.
These systems may implement a very diverse set of appli-
cations that require the performance and power benefits of
hardware implementation, such as wireless communications,
cryptography, and digital audio/video. Including a fixed cus-
tom hardware accelerator for each possible application type
is generally infeasible, particularly if one or more of the ap-
plications is not known at designtime. RH can act as a “gen-
eral” hardware accelerator, implementing a variety of differ-
ent computations within or across applications. Compute-
intensive sections of applications can be swapped into the
hardware when needed, and later swapped out to make room
for other computations, a process called reconfigurable com-
puting. Figure 1 illustrates a case where, after computations
A and B are complete in hardware, they can be replaced
with computation D—potentially while computation C is
still running. In effect, run-time reconfiguration allows RH
to act as a virtual hardware accelerator, with capacities and
capabilities beyond its actual physical structure.

Low-power operation is critical to many embedded sys-
tems to improve battery life, reduce costs of operation, and
even improve reliability [7]. Computations implemented in
RH often dissipate less power than equivalent software run-
ning on embedded processors, since they typically can be im-
plemented at lower clock rates and avoid the overhead asso-
ciated with fetching, decoding, issuing, and committing in-
dividual instructions [8–12]. However, they also often have
higher power dissipation than fixed ASIC solutions [10, 13].

Finally, the flexibility of RH can also be used to increase
the fault-tolerance of designs. RH can be reconfigured to
avoid hardware faults [14], whether they result from fabri-
cation or the environment. If the fault is from fabrication,
this increases product yield, decreasing costs. If the fault de-
velops after deployment, this allows a faulty device to poten-

tially continue normal operation. The new configuration can
even be deployed remotely [14, 15] to avoid inconveniencing
the consumer or allow updates for a device that cannot be
physically accessed (systems deployed in space, on the ocean
floor, or at other remote or unsafe locations). Extra reconfig-
urable logic in a design can also allow a system to compensate
if a fault occurs in a nonreconfigurable resource [16]. The
fault-tolerance of RH can even extend to design faults, allow-
ing bug fixes or even upgrades for emerging standards to in-
crease device lifespan. Fault-tolerance advantages and tech-
niques are discussed in greater depth in Section 4.2.

This article discusses the benefits and issues of employ-
ing RH in embedded systems designs. Section 2 lists a variety
of applications implemented in embedded systems with RH.
Section 3 discusses basic architectural aspects, and describes
several example systems. Other design issues critical to many
embedded systems are discussed in Section 4. Section 5 ad-
dresses configuration overhead, and Section 6 discusses de-
sign tools. Future issues in reconfigurable embedded com-
puting are discussed in Section 7 For more specific technical
information on RH and reconfigurable computing, as well as
their use outside of embedded systems, please refer to one or
more of the following surveys: [10, 17–22].

2. WHAT APPLICATIONS BENEFIT FROM RH?

Initially, smaller reconfigurable devices such as PLDs and
PALs were used as board level glue logic. Similarly, RH can
now be used as chip-level glue logic on systems-on-a-chip
(SoCs) [23]. In particular, RH can act as a flexible communi-
cation fabric for different cores on the SoC [24–26]. This al-
lows hardware design to proceed even if the intercomponent
communication methods have not yet been finalized. This
approach also improves time-to-market and design costs be-
cause the testing of a single reconfigurable communication
fabric is faster and less costly than the testing of separate
communications fabrics for many different SoC designs. Fur-
thermore, the configurable communication fabric can poten-
tially be reconfigured if necessary to circumvent design errors
in other SoC components [23, 27].
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RH can also perform computations in a capacity be-
yond simple ASIC replacement. By reconfiguring the hard-
ware at runtime, one or more RH structure can be reused for
many different computations over time (Figure 1) [10, 20–
22]. Since many embedded systems must be both high-
performance and low-power, yet may also have size or flex-
ibility constraints preventing fixed-ASIC implementation,
RH provides a valuable implementation method. Further-
more, computational cores used in many applications are
available as predesigned intellectual property (IP), simplify-
ing the design process.

Software-defined radio

Telecommunications industries employ constantly evolving
wireless technologies. Companies under significant pressure
to deliver products before their competitors sometimes even
release products before standards are finalized. Software-
defined radios (SDR) are programmable to implement a va-
riety of wireless protocols, potentially even those not yet in-
troduced [28–35]. Custom hardware allows many embed-
ded systems to meet stringent power and performance re-
quirements, particularly for small battery-powered mobile
devices, but in this case the system must also be extremely
flexible. A system with RH can implement parallel DSP oper-
ations with a higher degree of both performance and power
efficiency than a software-only system, plus an RH system
can be reconfigured for different protocols as needed.

Medical imaging

Recently, several RH-based systems and algorithms have
been proposed for medical imaging [36, 37]. The ECAT
HRRT PET scanner from CTI PET Systems, Inc. [36] de-
tects abnormalities in organ systems, helping to find can-
cerous tumors and assisting in monitoring ongoing patient
treatment. This system can dynamically reconfigure itself
for setup, detection, and equipment self-diagnosis modes.
One project implementing a parallel-beam backprojection
for medical computer tomography on RH was able to ac-
celerate the application 100x over a 1 GHz Pentium by im-
plementing a custom design in RH and performing a thor-
ough bit-precision analysis [37]. This system also scales well
with additional hardware (4x more hardware leads to 4x bet-
ter performance).

Networking

RH is commonly used in network processors [38–42] which
have high performance demands and inherently parallel
workloads. Furthermore, networks can use many different
routing protocols, and different system administrators may
have varying needs at different times. RH has been used in
network devices to run tasks such as packet classification
[38], dynamic routing protocols [39, 40], and intrusion de-
tection systems [42] among others. RH can also accommo-
date emerging network protocols through reconfiguration.

Encryption

Many encryption algorithms are well-suited to hardware im-
plementation. Operations are generally highly parallel and
repetitive, with the same series of operations performed
on each piece of data. Furthermore, these algorithms fre-
quently use exclusive-or operations, which do not require
the area and delay overhead of a complete ALU. As en-
cryption research continues to evolve, RH can be reconfig-
ured to implement new standards. For these reasons, encryp-
tion algorithms are a popular choice for RH implementation
[9, 43, 44].

Scientific data acquisition and analysis

Scientific data-acquisition systems receive and preprocess
vast quantities of data before archiving or sending the data off
for further processing. These systems may be remote or inac-
cessible, operating on battery or solar power, yet requiring
extremely high performance to handle the required volume
of data. These systems are increasingly using RH to provide
this performance in a flexible medium that can be changed
as new approaches to data aggregation and preprocessing are
researched. RH has been used in systems proposed or created
for weather radar [45], seismic exploration [46], and adap-
tive cameras for solar study [47]. RH is also used to compress
the massive volume of data prior to transmission [48].

Spacecraft

RH’s low-volume costeffectiveness and hardware flexibil-
ity make it particularly applicable to space applications,
where it has been used for several missions, including Mars
Pathfinder and Surveyor [49, 50]. These devices can be re-
configured to add functionality for updated mission objec-
tives or fix design errors without requiring a space mis-
sion for repair. Spacecraft require special radiation-hardened
devices that are not produced in the same volume (due
to higher cost and lower demand) as standard microchips,
leading designers to incorporate the functionality of many
different discrete components into one or a few radiation-
hardened FPGAs. Fault-tolerance issues are discussed in
more depth in Section 4.2. More experimental research ex-
amines the use of genetic algorithms to design evolvable RH
that can automatically adapt to needed tasks [51].

Robotics

Robotic control systems often consist of a mix of hardware
and software solutions to meet strict size and power de-
mands. One military system prototype uses RH to control
unmanned aerial vehicles [46]. These vehicles cannot sup-
port large payloads, and must execute heavy-duty image pro-
cessing algorithms. Other research focuses more generally on
developing algorithms and hardware cores for robotic con-
trol and vision [46, 52, 53]. An overview of RH in robotic
applications appears in [53].



4 EURASIP Journal on Embedded Systems

Automotive

The automotive industry has embraced RH because it can
implement the functionality of many different parts, reduc-
ing repair inventories. Its programmable nature also simpli-
fies product recalls. Furthermore, FPGAs are well-suited to
the increasingly complex informational and entertainment
systems in newer automobiles [54, 55]. IP companies such
as Drivven provide cores for many engine control systems
(such as fuel injection) required by modern automobiles
[56], which can be implemented in one of several FPGAs
rated for automotive use.

Image and video

Digital cameras often need to implement many different
image-processing operations that must operate quickly with-
out consuming much battery power. With RH, the hardware
can be reconfigured to implement whichever operation is
needed [57, 58]. For systems requiring secure image trans-
mission, the RH can also be reconfigured to perform encryp-
tion and network interfaces [57]. Some systems can also be
configured to accelerate image display [57, 58], video play-
back [35, 59], and 3D rendering [59–61].

3. WHAT DO THESE SYSTEMS LOOK LIKE?

This section discusses the RH design and system-level inte-
gration, examining different design aspects and how they re-
late to embedded systems design. These topics are covered
more generally in several FPGA and reconfigurable comput-
ing survey articles [10, 17–22]. Finally, the end of this section
presents several specific embedded systems with RH.

3.1. Reconfigurable logic

Although commercial RH tends to contain LUT-based or
sum-of-products compute structures, these are not neces-
sarily ideal for many embedded systems. Each configuration
point in these structures contributes some level of area, de-
lay, and power overhead, and significant flexibility of these
structures may not be required if computations are limited to
a particular domain. In these cases, a more specialized recon-
figurable fabric can provide the necessary level of flexibility
with lower overhead than a fine-grained bit-level logic struc-
ture [62–66]. However, some applications, including cer-
tain encryption algorithms, cyclic redundancy check, Reed-
Solomon encoders/decoders, and convolution encoders, do
require bit-level manipulations. A number of reconfigurable
architectures combine fine- and coarse-grained compute
structures to accommodate both computation styles [67–
69]. Most frequently this involves embedding coarse-grained
structures, such as multipliers and memory blocks, into a
conventional fine-grained fabric [70], or designing the fine-
grained fabric specifically to support coarse-grained compu-
tations [63, 71].

To implement a needed circuit in RH, a CAD flow trans-
forms its descriptions into an RH configuration. First, the
circuit is synthesized, converting the circuit schematic or

hardware design language (HDL) description into a struc-
tural circuit netlist. Then a technology mapper further de-
composes that netlist into components matching the capa-
bilities of the RH’s basic blocks (LUTs, ALUs, etc.). Next, the
placer determines which netlist components should be as-
signed to which physical hardware blocks, and a router de-
cides how to best use the RH’s routing fabric to connect those
blocks to form the needed circuit. Finally, the CAD flow de-
termines the specific binary values to load into the configura-
tion bits for the determined implementation. More details on
generic CAD issues for RH can be found elsewhere [21, 72].

Like fixed hardware design, the CAD flow can target dif-
ferent area/delay/power tradeoffs through resource selection,
resource sharing, pipelining, loop unrolling, wordlength op-
timization, precision estimation, and others [73–81]. CAD
issues particularly applicable to embedded systems, however,
include heterogenous CAD topics [82–84], CAD tools for
nonsquare RH designs incorporated into SoCs [25], power-
aware CAD [84–91] (discussed further in Section 4.1), and
fast CAD algorithms [92–97]. Fast CAD algorithms can move
configurations to new locations on RH at run-time or make
small modifications to circuits based on run-time conditions
to increase efficiency [98, 99], based on available resources
[75], or potentially to provide fault-tolerance.

3.2. System-level integration

Embedded systems typically couple a traditional proces-
sor (the “host”) with custom hardware specifically to han-
dle compute-intensive highly-parallel sections of application
code [100]. The processor controls the hardware, and exe-
cutes the parts of applications not well-suited to hardware.
Reconfigurable computing systems also frequently couple
RH with a processor, for the same reasons as well as to control
the configuration processor of the RH [10, 20–22, 101]. RH-
processor coupling styles can be divided into three basic cat-
egories: RH as a functional unit on the processor data path,
RH as a coprocessor, and RH as an attached processor in
a heterogeneous multiprocessor system. The coupling meth-
ods are best differentiated by how and how often the RH and
host processors(s) interact.

Reconfigurable functional units (RFUs) are very tightly
coupled with a host processor. Input and output data are
generally read from and written to the processor’s register
file [66, 71, 102–106]. These units essentially provide new
instructions to an otherwise fixed instruction set architec-
ture (ISA). In some cases, the processor itself may be imple-
mented on reconfigurable logic, allowing significant proces-
sor customization [106, 107]. In Section 6.2 we will examine
some of the design tools that help simplify the process of cre-
ating these custom-ISA processors.

If the circuits on the RH can operate for some time in-
dependently of the host processor, a coprocessor or even het-
erogeneous multiprocessor coupling may be more appropri-
ate [3, 4, 108–112]. A coprocessor may or may not share
the data cache of the host processor but generally shares
the main memory. Figure 1 shows an example of a reconfig-
urable coprocessor that has its own path to a shared memory
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structure. A heterogeneous multiprocessor may contain one
or more reconfigurable units, one or more embedded or gen-
eral purpose processors, and possibly other special-purpose
processing elements [33, 109, 113]. Like homogenous mul-
tiprocessor systems, heterogeneous multiprocessors may use
shared memory for communication between compute nodes
[24], a communication bus, or even a network architecture
[113]. Synchronization and scheduling issues of these sys-
tems are similar to those of homogenous multiprocessors.

In some cases, using one or more separate FPGA chips
(plus the other system circuitry) would violate the area, per-
formance, or power constraints of the embedded system.
However, FPGA capacities are always increasing, so to ad-
dress this problem, designers can now use platform FPGAs
or systems on programmable chips (SoPCs), which are large
and complex enough to contain entire SoC designs, and fre-
quently include fixed communication structures and other
commonly-needed circuitry [67–69, 114]. Alternately, recon-
figurable logic can be embedded within an SoC [62, 64, 115,
116] to implement one or more computations. This pro-
vides for domain-specific SoCs that can be customized to the
actual application(s) needed by programming the reconfig-
urable logic appropriately. Domain-specific SoCs therefore
provide higher performance and lower power consumption
than a traditional FPGA structure, with some parts of the
hardware implemented as standard cells or even full custom.
The RH itself can even be customized to the applications
needed [117]. Domain-specific SoCs facilitate highly efficient
embedded systems, but with NREs that are amortized over all
applications within the domain [118].

3.3. Example systems

Embedded systems with RH span a range of sizes and com-
plexities, some using many discrete RH components, with
others primarily contained in an SoPC. Many of these sys-
tems use Linux or a modified lighter-weight Linux as an op-
erating system because the source code is freely available for
recompilation to the custom platform. This section presents
the high-level design details of a number of systems to pro-
vide a flavor of the range of systems using RH. However, this
list is by no means exhaustive, as there are a great many in-
teresting RH-based embedded systems.

One large system was designed for 3D vision [60]. This
system contains an image acquisition board connected to a
matrix of 36 Xilinx XC4005 FPGAs used for low-level image
processing (such as edge detection and edge tracking). Im-
ages preprocessed by the FPGAs are then sent to a board con-
taining 16 DSPs for high-level image processing. This board
also contains four more FPGAs used to create a reconfig-
urable interconnection network between the DSP chips.

Cam-E-leon (Figure 2) is another image-related embed-
ded system, designed in particular as a dynamic web cam-
era [57]. This system is capable of downloading new image
processing algorithms from a networked server and incorpo-
rating them into the system, implemented in RH. However,
it is significantly smaller than the 3D vision system, using
a custom FPGA board with two Xilinx Virtex XCV800 FP-
GAs. The FPGA board is responsible for the image process-

Ethernet
SRAM SRAM SRAM SRAM

SRAM SRAM SRAM SRAM

IBIS4
camera

FPGA#1
virtex

XCV800

FPGA#2
virtex

XCV800
Cam-E-leon board

To development board with CPU

Figure 2: Cam-E-leon is a dynamically reconfigurable web camera
platform from IMEC [57].
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Figure 3: Block diagram of CASA: an embedded radar-based haz-
ardous weather detection system using RH [45].

ing computations. A processor board running a Linux vari-
ant is responsible for network communication and reconfig-
uring the FPGAs. The camera itself is a 1.3 megapixel image
sensor, directly connected to the FPGA containing the cam-
era interface. This FPGA is also responsible for image pro-
cessing, while the other FPGA encrypts the image for secure
transmission. All circuitry would normally have fit in one of
the two FPGAs, but bandwidth concerns necessitated design
partitioning between two chips.

CASA is a weather radar data acquisition and process-
ing system used to detect hazardous conditions [45]. A block
diagram is given in Figure 3. Like Cam-E-leon [57], one of
the two FPGAs in CASA is dedicated to signal processing
(the left FPGA in both figures), and can be updated with
new functionality remotely by a networked server. In CASA,
the other FPGA is responsible for communication of result
data, but may also process data depending on the configu-
ration. An ARM-based microcontroller running Linux man-
ages the FPGA resources. CASA also contains multibanked
memory, multiple Ethernet interfaces, and analog-to-digital
(A/D) converters to digitize incoming radar data. CASA can
process data at sustained rates of 88.3 Mb/s.

The Linux-based SDR application described in [35] uses
a single Xilinx Virtex-4 FX FPGA, in conjunction with an
analog RF card, memory, and an output device (frame
buffer and audio). The FPGA contains two hard embedded
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Figure 4: Block-level diagrams of the system-level design (a) and
the FPGA design details (b) of a facial-recognition system [119].

PowerPC cores, and several soft-core components: a demod-
ulation core, a memory controller, and an IDCT. The analog
board receives the data over a wireless network and sends it
to the first processor. The first processor, coupled with the
demodulation core, processes the data and writes it to main
memory. The second CPU then decodes the data from mem-
ory using the IDCT core, and the resulting video and au-
dio stream is then written to the output device. A Linux-
based reconfigurable encryption processor system also uses
embedded PowerPC devices, but instead in a Virtex-II Pro
[44]. In this system, the RH contains a memory controller,
a bus bridge to communicate with the on-chip peripheral
bus (OPB), which in turn connects to an Ethernet controller,
a UART, the cryptographic engine itself, and control logic
to manage the reconfiguration of the cryptographic engine.
The on-chip PowerPC core communicates with these struc-
tures using the built-in processor local bus (PLB). This sys-
tem can be reconfigured to implement different encryption
algorithms.

One project compared several systems implementing a
face tracking algorithm, including a Xilinx Spartan-II 300
FPGA-based system, a custom ASIC-based hardware system,
and a software-based DSP implementation [119]. The FPGA
implementation is shown in Figure 4, including a system-
level block diagram (a) and details of the FPGA design (b).
The FPGA contains multiple interfacing controllers for the

sensors, the parallel port, and the network, and also imple-
ments a 15-node radial basis function (RBF) neural network
to detect faces and recognize facial expressions. The cus-
tom hardware system also used an FPGA, but as glue logic,
not a compute engine. As typically expected when compar-
ing ASIC, FPGA, and software implementations, the soft-
ware implementation had the lowest throughput (one-fifth
of the ASIC), and the custom hardware had the highest. The
FPGA implementation had half the throughput of the ASIC
version. However, the recognition rates were higher for the
more flexible solutions, with the programmable DSP achiev-
ing the highest, demonstrating a throughput/accuracy trade-
off. Both the FPGA and DSP implementations also have the
benefit that they can be modified post-deployment to imple-
ment new algorithms.

Several embedded systems use RH as custom functional
units on a processor’s data path. One example of this system
type is a 3D facial recognition program [120] using a Stretch
S5 processor [66]. This system beams an invisible light pat-
tern on a user’s face, which is then detected by cameras in-
terfaced with the processor. By examining differences in the
projected and detected light patterns, the system reconstructs
a 3D model of the target face in real time. The system also
contains an Ethernet link to allow the data to be sent over a
network. The embedded design implemented on a 300 MHz
S5 processor matched the performance of a 3 GHz PC by us-
ing RH as an application accelerator. However, this applica-
tion was designed entirely in software and compiled by the
Stretch compiler to a mix of software and hardware—a pro-
cess completed in five person-months. Design tools for this
development style are discussed further in Section 6.2.

4. WHAT ARE OTHER IMPORTANT DESIGN ISSUES?

Beside the basic choices of RH logic design and RH inte-
gration, low power, fault-tolerance, and real-time issues are
also critical to embedded systems designers. Understanding
the interaction between these topics and RH is important
whether the designer is choosing off-the-shelf components
to include in a system, choosing between completed systems,
or designing a new RH fabric specifically for a particular em-
bedded system.

4.1. Low power

Many embedded devices are battery powered, increasing
the importance of power efficiency. Computations on FP-
GAs typically consume less power than equivalent software
running on embedded processors, but more power than
ASICs [10]. Studies examining the data-per-watt efficiency
of FPGA-based implementations have found that they can
process just under 20x more data-per-watt than a RISC-
style processor for both the IDEA encryption algorithm [9]
and an FIR filter operation [8]. Yet another study shows the
use of RH yielding performance increases of 4.3x to 13.5x,
while simultaneously reducing power consumption by up to
93% over a very-long-instruction-word-style (VLIW-style)
processor [11]. To further improve RH power-efficiency,
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Figure 5: Two different layout patterns for fixed-distribution dual-Vdd FPGA fabrics [88].

researchers have investigated energy-efficient architectures,
the use of multiple supply voltages or threshold voltages,
and energy-efficient mapping techniques to implement algo-
rithms on RH.

Several energy-efficient reconfigurable architectures have
been specifically developed to reduce power dissipation. The
FPGA interconnect and clock networks are responsible for
most of the power dissipation in traditional FPGA architec-
tures [121]. One proposed fine-grained FPGA structure im-
proves energy efficiency through a hybrid interconnect struc-
ture using nearest-neighbor connections, a symmetric mesh
architecture, and hierarchical connectivity to shorten and re-
duce the number of necessary wires [121]. This FPGA ar-
chitecture also uses low-voltage circuit swing techniques and
dual edge-triggered flip-flops to reduce the power dissipation
from clock distribution. MONTIUM is an energy-efficient
coarse-grained reconfigurable architecture designed for 16-
bit DSP applications [122]. It improves power efficiency by
reducing interconnect and configuration overhead, provid-
ing access to small, local memories, and optimizing the RH
for word-level DSP applications. The MONTIUM reconfig-
urable processor can implement an adaptive Viterbi algo-
rithm using 200 times less energy than an ARM9 processor
[12].

Multiple supply voltages (Vdd) or threshold voltages (Vt)
can also improve energy-efficiency in RH. Reducing Vdd de-
creases dynamic power, while increasing Vt decreases leakage
power. Since changes to Vdd and Vt also affect noise mar-
gins and circuit speed, appropriate values for Vdd and Vt
must be carefully selected. Proposed fabrics with predefined
dual-Vdd and dual-Vt fabrics use low-leakage SRAM cells
and dual-Vt lookup tables that do not penalize performance,
but reduce total power dissipation by 13.6% and 14.1% on
average for combinational and sequential circuits, respec-
tively [88]. An example fixed dual-Vdd FPGA layout is given
in Figure 5. In dual-Vdd architectures, timing-critical circuit
paths are assigned to high-Vdd logic and routing, while the
remaining parts of the circuit are assigned to low-Vdd re-
sources. Level converters preserve a signal’s value when tran-
sitioning between Vdd levels. Programmable dual-Vdd ar-

chitectures can provide an average power savings of 61%
across various Microelectronics Center of North Carolina
(MCNC) benchmarks [87]. Multiple-Vt architectures, com-
bined with low-leakage multiplexer and routing structures,
gate biasing, and redundant SRAM cells can reduce leakage
current by roughly 2X to 4X over FPGA implementations
without any leakage reduction techniques [89]. Finally, many
commercial FPGAs contain multiple clock domains to allow
designers to clock critical circuit sections at fast rates, and
noncritical sections at slower rates, lowering overall power
consumption of the design [67–69].

Dual-Vdd and dual-Vt architectures require a CAD flow
to choose between fast but power-hungry resources or slower
but lower-power resources for circuit components [87–89].
However, CAD algorithms can also affect circuit power-
efficiency in existing RH designs. For example, resource se-
lection, module disabling, parallel processing, pipelining,
and algorithmic selection together improved energy effi-
ciency of FFT and matrix multiplication algorithms [85].
A dynamic programming-based approach to map beam-
forming applications on a Xilinx Virtex-II Pro reduces en-
ergy dissipation by 52% on average over a greedy algorithm
[86]. Considering power implications of embedded memory
blocks can reduce embedded memory dynamic power by an
average of 21% and overall core dynamic power by an average
of 7% [84]. Power information can also be incorporated into
cost functions used for existing CAD processes. Adding an
FPGA power model [91] and using power-aware algorithms
throughout the CAD flow can provide 26.5% power-delay
product savings [90].

4.2. Fault tolerance

Faults can be divided into two categories: permanent and
transient. Fabrication faults and design faults are among
the permanent faults. Transient faults, commonly called sin-
gle event upsets (SEUs), are brief incorrect values result-
ing from external forces (terrestrial radiation, particles from
solar flares, cosmic rays, and radiation from other space
phenomena) altering the balance or locations of electrons,
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Figure 6: Faults (black) can be overcome by remapping affected
configurations (gray) to nonfaulty areas of reconfigurable hardware.

usually in a small area of the system. We discuss both cate-
gories of faults as they relate to RH in this section.

Tolerating permanent faults is critical to maximizing de-
vice and system yields to decrease costs, and to increasing the
lifespan of deployed devices. Lifespan is of particular con-
cern when a system has been deployed to a location difficult,
dangerous, or impossible to reach for repair or replacement.
Space-deployed unmanned systems, for example, must be
extremely fault-tolerant, as replacement/repair would be ex-
pensive, and at worst, impossible. RH can increase tolerance
of permanent physical faults because the hardware is modi-
fiable to potentially compensate for these faults (from fabri-
cation or other sources) within the RH (Figure 6) [14, 123]
or even elsewhere in the system [16]. Yields of “static” FPGA
devices (chips used for a single, nonchanging configuration)
can be increased by using application-specific test vectors to
determine if a particular faulty chip is capable of implement-
ing a particular configuration, allowing designers to success-
fully use otherwise faulty chips [124, 125]. Finally, design
faults are among the easiest to fix in RH, as these devices
can be reprogrammed with corrected versions of the faulty
circuits.

Unfortunately, although RH’s value is in its flexibility,
and that flexibility can increase RH’s tolerance to perma-
nent faults, it can also increase its underlying susceptibil-
ity to faults. The flexibility of RH results from the ability to
control its resources based on configuration bit values, fre-
quently stored in SRAM. These SRAM bits, along with any
other hardware used to provide flexibility, such as multiplex-
ers, tri-state buffers, and pass transistors, are additional fail-
ure points not present in ASIC-equivalent circuit implemen-
tations, and increase the chip area to present a larger target to
radiation particles. Furthermore, unless the underlying RH
design prevents multiple drivers to a wire (instead of rely-
ing on the design tools to prevent it), a fault in configuration
memory could cause a short-circuit, damaging the device.

Using properly-shielded radiation-hardened devices can
minimize SEU errors. Unfortunately, these devices are ex-
pensive, difficult to find, and generally use less advanced
technologies than their unshielded counterparts [14, 123].
Triple modular redundancy (TMR) can detect and correct
faults in circuits implemented in FPGAs [126]. In TMR three
copies of all routing and logic resources perform the same
computation, and the three “vote” on the correct result. The
downsides of this technique include area, power, and per-

formance overheads that are generally unacceptably high for
embedded devices, and the fact that TMR cannot accommo-
date simultaneous errors in multiple copies [14, 127]. Other
fault-tolerance techniques focus only on the configuration
structure. Scrubbing reads back all of the configuration bits,
compares them to the correct values, and re-writes the cor-
rect values if a discrepancy is found [127, 128]. Checksums
can also be used to detect errors in subsets of configuration
information (such as a single logic block), but requires addi-
tional resources to store the checksum values in the hardware
[127]. Los Alamos has researched methods to decrease SEU-
susceptibility of RH destined for spacecraft use [129], with
the goal of tolerating and recovering from SEUs without a full
system restart. Continuous configuration bit polling, com-
bined with circuit mapping techniques to make SEUs more
easily visible allow easier detection of errors in configuration
data [129]. Similar work uses an SEU watchdog to reset RH
after SEUs in high-radiation environment [130].

Self-testing can also be applied to RH, with the hardware
split into multiple self-testing areas (STARs). Periodically,
each STAR is isolated from the rest of the system for test-
ing, while the remainder of the system continues operation.
Detected faults cause the system to reconfigure the applica-
tion to avoid the fault without interrupting system function,
and partial or entire STAR blocks can be marked as unus-
able [131]. This approach requires partitioning the hardware
to match the STAR structure and ensuring each block is suf-
ficiently computationally independent. Besides testing itself,
RH can act as a built-in reconfigurable tester for other parts
of the system, particularly for SoC devices [132].

Any fault-tolerance technique will impose additional
overhead in terms of area, delay, power, or some combination
of the three. One way to reduce this overhead is to ap-
ply fault-tolerance techniques selectively within the system.
Hardware where faults could cause catastrophic failure (im-
proper levels of anesthesia to be delivered, improper nitro-
gen/oxygen mix in a pressurized vehicle, etc.) receive the
most protection, while hardware where faults cause less criti-
cal errors (momentary glitch in an LCD display) receive less.
The COFTA project uses an automatic approach to deter-
mine where duplicate-and-compare hardware and assertions
should be added to provide the same level of fault tolerance
as TMR but with 60% less area overhead [133].

4.3. Real-time support

Many embedded systems require real-time operation. Gen-
erally, there are two types of real-time deadlines: deadlines
that must always be met (hard deadlines), and deadlines that
must be met the majority of the time (soft deadlines) [134].
Hard deadlines represent tasks critical to system operation,
causing system failure if missed. Soft deadlines are used for
tasks such as video playback, where as long as the video pro-
cessing generally keeps up, a few dropped frames are not crit-
ical. These requirements shift the focus of the real-time op-
erating system (RTOS) to consider both deadline times and
types, and concentrate on optimizing worst-case task execu-
tion times instead of average-case times.
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In dynamically reconfigurable systems, the RTOS must
take into account not only task types, deadlines, and deadline
types, but also RH/task resources and task configuration time
[135–137]. If multiple tasks reside on the RH simultaneously,
the RTOS must also consider their locations in the hardware.
Generally, a configuration is tied to specific resources at spe-
cific locations on RH. However, to facilitate run-time recon-
figuration, partially reconfigurable architectures with reloca-
tion allow the locations of the tasks to be moved to accom-
modate other tasks [137]. Issues related to configuration ar-
chitectures and reconfiguration management are discussed
in Section 5.

An RTOS may use preemptive scheduling of tasks onto
RH [138]. For example, a soft-deadline task present on the
RH may be removed to make room for a hard-deadline task.
These scheduling algorithms offer tradeoffs in terms of over-
all system utilization and the total number of tasks that can
be effectively scheduled. The OVERSOC project [135] inves-
tigates the interaction between embedded RTOSs and recon-
figurable SoC platforms, and proposes a variety of methods
to model reconfigurable fabrics and techniques for schedul-
ing real-time tasks on reconfigurable SoC platforms.

Although using RH to create a real-time system with cus-
tomized hardware instructions can improve task completion
ratios, most tools used to design these instructions [139, 140]
focus on reducing average application execution time, when
in fact worst-case time is generally more important for real-
time operation. One custom instruction generator tool de-
signed specifically for real-time systems instead selects sub-
graphs for custom instruction implementation to minimize
worst-case task execution time [141]. Topics related to cus-
tom instruction generation for non-real-time systems are
discussed in more depth in Section 6.2.

4.4. Design security

High-quality hardware cores for embedded systems are ex-
tremely useful to embedded designers, speeding the develop-
ment process. However, these cores are also time-consuming
and expensive to develop and verify. Furthermore, since the
hardware designs frequently reside in a configuration bit-
stream loaded at startup or at runtime into the RH, designs
can be intercepted and reverse-engineered. Therefore, design
security of this intellectual property (IP) is critical to core de-
velopers, leading to encryption of configuration bitstreams
[142, 143]. Both Altera and Xilinx have implemented config-
uration encryption in their commercial products [144, 145].

5. WHAT ABOUT CONFIGURATION OVERHEAD?

Reconfiguring hardware at runtime allows a greater number
of computations to be accelerated in hardware than could be
otherwise, but introduces configuration overhead as the con-
figuration SRAM must be loaded with new values for each
reconfiguration. For separate FPGA chips, this process can
take on the order of milliseconds [136], possibly overshad-
owing the benefits of hardware computation. This section

briefly presents both hardware- and software-related aspects
of managing the configuration overhead.

A straightforward strategy to reduce configuration over-
head is to reduce the amount of data transferred. The struc-
ture of the logic/routing itself has an effect: fine-grained de-
vices provide great flexibility through a very large number
of configuration points. Coarse-grained architectures by na-
ture require fewer configuration bits because fewer choices
are available. The Stretch S5 embedded processor [66], for
example, is composed of 4-bit ALU structures. This architec-
ture can be configured in less than 100 microseconds if the
configuration data is located in the on-chip cache.

Partially-reconfigurable RH can be selectively pro-
grammed [68, 71, 110, 111, 114, 146] instead of forcing the
entire device to be reconfigured for any change (a common
requirement). However, to be truly effective for run-time
reconfigurable computing, the devices must also relocate
and defragment configurations to avoid positioning conflicts
within the hardware and fragmentation of usable resources
[137, 147–149], maintaining intraconfiguration communi-
cation and connections to the outside of the RH. A page-
based architecture is an alternate form of partially reconfig-
urable architecture that simplifies communication problems.
In a page-based design, identical tiles of reconfigurable re-
sources are connected by a communication bus, and config-
urations occupy some number of complete pages [150–152].
Pipeline reconfigurable architectures have a similar quality,
as each configuration stage may be assigned to any phys-
ical pipeline unit [111]. These types of organizations can
also be imposed on existing FPGA architectures by dedi-
cating part of the hardware to the required communication
infrastructure [150, 153] that simplifies cross-configuration
communication. Furthermore, page- or tile-based architec-
tures would be especially useful in a system also requir-
ing fault-tolerance, as the same division used for scheduling
could be used for the STARS fault-detection approach dis-
cussed in Section 4.2, and faulty pages could be avoided.

Configuration data can also be compressed [154], par-
ticularly useful when the RH and the configuration memory
are on separate chips. When possible, on-chip configuration
memory or a configuration cache can dramatically decrease
configuration times [66, 155] due to shorter connections and
wider communication paths. Finally, multiple configurations
can be stored within the RH at the configuration points in a
multicontexted device [156, 157]. These devices have several
multiplexed planes of configuration information. Swapping
between the loaded configurations involves simply changing
which configuration plane is addressed. A key benefit of this
approach is background-loading of a configuration while an-
other is active.

Software techniques such as prefetching [158] or
scheduling can also reduce configuration overhead by pre-
dicting needed configurations and loading them in advance,
as well as retaining configurations (in a partially reconfig-
urable device) that may be needed again in the near future. If
the system operation is well-defined and known in advance,
temporal partitioning and static scheduling may be suffi-
cient [159, 160]. For other systems, the simplest approach is



10 EURASIP Journal on Embedded Systems

A

B

C

HWfast HWsmall HWfast

SW HW

HWsmall

HWsmall

K
er

n
el

Time

� � �

� � �

� � �

Figure 7: Different implementations (fast but large, small but
slower, or software) for three kernels (A, B, and C) are shown over
time. Shaded areas show when kernels are not needed. In this exam-
ple, one fast or two small kernels can fit in RH simultaneously.

to load configurations as they are needed, removing one or
more configurations from the RH if necessary to free suffi-
cient resources [66, 155, 161, 162].

In more complex systems, compiler- or user-inserted di-
rectives can be used to preload the configurations in or-
der to minimize configuration overhead [155], or the con-
figuration schedule can be determined during application
compilation [163], dynamically at runtime [137, 153, 164–
171], or a combination of the two [152]. Although dynamic
scheduling requires some overhead to compute the schedule,
this is essential if a variety of applications will execute con-
currently on the hardware, breaking the static predictability
of the next-needed configuration. Dynamic scheduling also
raises the possibility of runtime binding of resources to ei-
ther the reconfigurable logic or the host processor [168–170],
and of choosing between different versions of the compu-
tation created in advance or dynamically [75, 99] based on
area/speed/power tradeoffs [153, 165, 170, 172] as shown
in Figure 7. This could allow an embedded device to run
much faster when plugged in, and save power when operat-
ing on batteries. To facilitate this scheduling, the RH could
be context-switched, saving the current state before load-
ing a new one [66, 173, 174], possibly allowing preemptive
scheduling of the resources [137].

6. WHAT TOOLS AID THE RECONFIGURABLE
EMBEDDED DESIGNER?

The design of reconfigurable embedded systems, or applica-
tions for them, is frequently a complex process. Fortunately,
tools can assist the designer in this process, as described in
this section.

6.1. Hardware/software codesign

The reconfigurable computing hardware/software (HW/SW)
codesign problem is similar to general HW/SW codesign,
and in many cases FPGAs are used to demonstrate tech-
niques even if they do not leverage run-time reconfiguration
[24, 175, 176]. Design patterns [77] in many cases can ap-
ply equally well to general hardware design and hardware
design for reconfigurable computing. This section primar-
ily focuses on areas of codesign specific to embedded recon-
figurable computing. More information on general HW/SW
codesign can be found elsewhere [177–180].

Designers can manually HW/SW partition applications
using a combination of profiling and intuition, and develop
the components separately for each resource [171]. Alter-
nately, applications can be specified in a more unified form,
generally using a high-level language (HLL) such as C or
Java [66, 175, 181–183], but in many cases these compilers
require code annotations to specify hardware-specific infor-
mation (custom bitwidths, parallelism, etc.) or only operate
on a restricted subset of the language. Some compilers per-
mit parallelism to be specified at the task level using threads
[184, 185]. However, compiling hardware from a software-
style description can be difficult or inefficient due to the se-
quential nature of software, and the spatial nature of hard-
ware [186–188]. Some efforts have therefore focused on new
ways to express computations that are more agnostic to final
implementation in hardware or software, expressing instead
the dataflow of the application [151, 189–191]. One aspect
of HW/SW codesign unique to RH is temporal partitioning
[160, 171, 192, 193], the process of breaking up a single cir-
cuit or a series of computations into a set of configurations
swapped in and out of the RH over time. Some systems also
allow these configurations to be dynamically placed and con-
nected to the other components on RH [162, 194].

Finally, designing an application for an embedded system
with RH has the advantage that verification tools can use the
RH in conjunction with software simulation and debugging
to accelerate the verification process [66, 195–198]. If design
errors are found, the RH can be reconfigured with a fixed
design because configuration is not a permanent process.

6.2. Processor ISA customization

Backwards-compatibility is generally far less critical to em-
bedded systems than to general-purpose computers. This al-
lows embedded systems designers the freedom to adapt pro-
cessors’ ISAs to changing needs and technologies, and makes
custom compilers for such ISAs less of a burden as embedded
applications are frequently developed by the same company
that develops the hardware (or one of its partners). RH al-
lows the designers to use a single chip design to implement
dramatically different ISAs by reprogramming the RH with
different functionalities. Multiple design tools are available
to automate this process [66, 139, 140, 199, 200]. These tools
generally examine precompiled binary instruction streams
and generate data flow graphs as candidates for custom in-
structions. Another approach is to create a compile-time list
of potential configurations and their associated binary in-
struction graph, and at run time detect those graphs in the
instruction stream, replacing them with the appropriate RH
operations [140].

The SPREE tool [200] is a manual-assist tool that allows
a designer to explore processor tradeoffs such as pipeline
depth, software versus hardware implementation of compo-
nents such as multiplication and division, and other design
features. The tool also removes unused instructions to save
area. Tool chains from Altera and Xilinx focus on SoPC plat-
form design, with parameterizable soft-core processors man-
ually tuned to the respective FPGA architectures, and core
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generators to create other common computational structures
needed on SoPC designs. Developers using Stretch proces-
sors write applications in C, profile them, and choose can-
didate functions for RH to implement in a C variant de-
signed to specify hardware [66, 120]. Finally, for designers
wanting to create a fixed-silicon custom processor with a re-
configurable functional unit (instead of a soft-core processor
implemented on an FPGA), customizable processors such as
Xtensa [201] provide a base processor design and a tool-set
for customization. Xtensa is the base of Stretch, Inc. commer-
cially available reconfigurable embedded processors [66].

6.3. Automated RH design

Finally, automatic design tools can aid in the creation of
the RH itself [202–204]. The Totem project focuses on the
creation of automatic design tools to create coarse-grained
domain-specific RH for SoCs based on the intended applica-
tions [203]. Other work investigates the use of synthesizable
FPGA structures either specifically for embedding in SoCs
[23, 202] or tile-based FPGA layout generators usable ei-
ther in SoCs or as stand-alone architectures [204]. This latter
work created architectures in 34 person-weeks instead of 50
person-years, with only a 36% area penalty.

7. WHAT DOES THE FUTURE HOLD?

Reconfigurable hardware faces a number of challenges if
it is to become commonplace in embedded systems. First,
there is a Catch-22 in that because reconfigurable comput-
ing is not a common technique in commercial hardware,
it is not yet something that many embedded designers will
know to consider. This problem is gradually being overcome
with the introduction of reconfigurable computing in certain
embedded areas, such as network routers, high-definition
video servers, automobiles, wireless base stations, and medi-
cal imaging systems. Furthermore, a greater number of peo-
ple are exposed to reconfigurable hardware as more univer-
sities include courses and laboratories using FPGAs. Second,
the strict power limitations of many embedded systems high-
lights the power inefficiency of LUT-based reconfigurable
hardware compared to ASIC designs. Because power con-
cerns are intensifying in all areas of computing, research will
increasingly focus on power efficiency. Efforts are already un-
derway, with researchers studying a variety of architectural
and CAD techniques to improve power dissipation in recon-
figurable hardware and computing. Third, the flexibility of
reconfigurable hardware that permits the fault tolerance ben-
efits discussed in this article also increases the hardware’s sus-
ceptibility to faults due to the extra area introduced to sup-
port reconfigurability and the use of SRAM-based configu-
ration bits. Innovative reconfigurable architectures, circuit-
level design methodologies, and techniques for detecting and
avoiding faults are needed to further improve the fault toler-
ance of reconfigurable hardware.

There are also a number of software-related issues to con-
sider. Compiler support, while improving, is not yet at the
level required for widespread adoption of embedded recon-
figurable computing. In most cases the computations to be

implemented in software and the computations to be imple-
mented in hardware must be specified separately in different
languages, and compiled with different toolsets. While some
systems and tool suites do offer a more unified flow, these
are currently less common. Continued research in effective
hardware-software codesign is essential to improve the ease
of application design for embedded reconfigurable systems.
Furthermore, even though the concept of OS support of re-
configurable hardware was proposed nearly a decade ago, this
area remains open.

These challenges are worth addressing, as reconfigurable
hardware has many advantages for embedded systems. Im-
plementing compute-intensive applications partially or com-
pletely in hardware can dramatically improve system perfor-
mance and/or decrease system power consumption. The flex-
ibility of the hardware allows a single structure to act as an
accelerator for a variety of calculations, saving the area that
discrete specialized structures would otherwise require, and
allowing new computations to be implemented on the hard-
ware after fabrication. That flexibility can also be used to re-
duce the design and production cost of embedded system
components, as one physical design can be reused for mul-
tiple different tasks, amortizing NREs. Finally, reconfigura-
bility provides new opportunities for fault-tolerance, since a
design implemented in the reconfigurable hardware can be
configured to avoid faulty areas of that hardware. In some
cases, the reconfigurable hardware can even be configured
to implement the functionality of a faulty component else-
where in the system. For all of these reasons, reconfigurable
hardware is a compelling component for embedded system
design.
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1. INTRODUCTION

Video is becoming an essential part of embedded multime-
dia terminals. There are, however, many contradicting con-
straints in video codec implementations. One challenge is
the rapid evolution of compression standards with several
different algorithms. This requires programmability that is
easy to achieve with processor-based platforms. However,
achieving the best power, energy, and silicon area efficiency
requires custom hardware implementations. On the other
hand, hardware (HW) design is more demanding than soft-
ware (SW) development, and modifications are very expen-
sive and time consuming. For example, nonrecurring engi-
neering (NRE) costs, especially photo mask fabrication costs,
increase rapidly with each technology generation making fre-
quent HW upgrades less favorable. Software only implemen-
tation solves the flexibility and upgradeability problem but
is not an optimal solution from a performance versus silicon
area point of view.

The work in this paper solves the HW video codec de-
sign flexibility and upgradeability problem with a fully pro-
grammable, scalable MPSOC approach [1, 2]. The key idea
is to use synthesizable soft-core processors and a synthesiz-
able system-on-chip (SOC) interconnection network, which
allows prototyping and implementation on any FPGA plat-
form, or in an ASIC technology with a rapid design cycle. In
addition, our implementation framework enables a seamless

trade-off between performance and area without creating an
extra burden in system design by scaling the number of iden-
tical processors. Furthermore, the architecture is designed to
be easily reusable for any kind of application.

A data parallel MPEG-4 simple profile (SP) software en-
coder is implemented on the MPSOC to demonstrate the
effectiveness and scalability of the presented solution. The
video images are divided into independent horizontal slices
which are mapped to different processors for encoding. A
master-slave configuration is used where the master proces-
sor is responsible for overall control and the slaves perform
the video encoding.

In this paper, we use an Altera Stratix FPGA as the target
platform [3], Altera Nios processors, and our heterogeneous
IP block interconnection v.2 (HIBI) [4] as the communica-
tion network. No MPEG-4 specific HW accelerators, for ex-
ample, for motion estimation, are currently used, but HIBI
provides a very convenient plug-and-play method to add in-
tellectual property (IP) blocks independent of the vendor.

Topics of interest in this paper include practical im-
plementation issues, such as utilized FPGA resources and
achieved performance, design cycle improvement, scalabil-
ity, and encoder specific issues like memory optimization due
to scarce on-chip memories. The implementation works in
practice with an FPGA board attached to a PC that sends
source video streams and receives compressed data.
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This paper is organized as follows. Related work is re-
viewed in Section 2. The MPSOC architecture is described
in Section 3. The video encoding software and our encoder
parallelization approach are presented in Section 4. Section 5
explains the integration of the HW architecture and software.
In Section 6 the results are presented. Finally, Section 7 sum-
marizes the paper and discusses future work.

2. RELATED WORK

In this section we consider the related work in two categories,
parallel video encoding and FPGA-based MPSOC architec-
tures.

2.1. Parallel encoder implementations

Due to high computational complexity of video encoding
[5], several parallel solutions have been developed in con-
trast to traditional sequential program flow [6]. There are at
least four general parallelization methods used: functional,
temporal, data, and video-object parallelism. For functional
parallelism [7] different functions, such as DCT and motion
estimation, are connected in a functional pipeline to be exe-
cuted in parallel by different processing units. However, scal-
ing a functional parallel application requires a lot of work
(high scaling effort). When each processor executes a specific
function, adding or removing processors requires a whole
system redesign to balance the computational load in the
pipeline. For temporal parallelism (i.e., parallel in time) a full
frame is assigned to every CPU. The scalability of this style is
high. However, as the number of parallel encoders increase, it
introduces a significant latency in encoding, since one frame
is buffered for each encoding CPU. Works in this category
include [8–10]. In data parallelism, the image is divided into
slices that are assigned to different CPUs. The slices are en-
coded in parallel frame-by-frame. This approach is used in
[11–13]. For video-object parallelism, which is specific to
MPEG-4, arbitrary sized shapes referred to as video-objects
in the image are assigned to different CPUs. The objects can
be considerably unequal in size, which may lead to unbal-
anced execution time between different CPUs if care is not
taken. Such work is presented, for example, in [14].

We are mainly interested in real-time encoding. Func-
tional, data, and video-object parallelism are all eligible for
real-time, low-latency video encoding, because they do not
require frames to be buffered. We chose data parallelism be-
cause functional parallelism has a high scaling effort and
video-object parallelism is strictly MPEG-4 specific. Scala-
bility is the most feasible criterion used to compare different
architectures and parallel implementations, because reported
results typically vary in accuracy. The scalability of different
parallelization methods is compared in Section 6.

Contemporary FPGA designs tend to use single encoder
cores with HW accelerators arranged in a functional pipeline.
Our implementation is one of the first utilizing multiple par-
allel encoders on an FPGA in a data parallel configuration.
In [15], an FPGA-based H.263 encoder is demonstrated re-

quiring 400 kgates for HW accelerators while providing 30
QCIF frames/s at 12 MHz. Reference [16] presents FPGA im-
plementations of hardware accelerators for an H.264 video
codec. In [17], an H.264 coder is designed and verified with
an FPGA emulator platform. An interface between a host PC
and an FPGA-based MPEG-4 encoder is built in [18] en-
abling fast prototyping and debugging.

2.2. FPGA multiprocessor architectures

Although multiprocessor systems have been researched for
a while, most of the work has concentrated on ASIC imple-
mentations. FPGAs have only recently grown large enough
to hold such implementations, which is one reason for a low
number of reported FPGA-based MPSOCs. However, two
trends of research can be identified.

First, FPGA multiprocessor systems are used to develop
parallel applications. In these works, the main emphasis
is usually on the application and its parallelization. The
hardware architectures are briefly summarized. Typical im-
plementations rely on vendor-dependant solutions, because
they are usually easy to use. The hardware restrictions to scal-
ability or flexibility and the ease of adding or removing com-
ponents are often not addressed.

In [19], Martina et al. have developed a shared mem-
ory FPGA multiprocessor system of digital signal processor
(DSP) cores of their own design that run basic signal pro-
cessing algorithms. The implemented bus-interconnection is
not described. There are no synthesis results for the whole
system, but the system runs at 89 MHz on a Xilinx XCV1000
FPGA. Wang and Ziavras presented a system of six soft-
core Nios processors [20]. Processors are interconnected
with a multimaster Avalon bus [21]. No figures of the area
required for the whole system are presented. However,
the maximum clock frequency is 40 MHz using an Altera
EP20K200EFC484-2x FPGA board.

Second, a hardware-oriented point of view for future
multiprocessor requirements is presented. Reconfigurability
is often emphasized [22]. Also, IP-block-based systems are
stressed and a need for a scalable, standard interface inter-
connection network is anticipated. Kalte et al. [22] have pre-
sented a multilayer advanced microcontroller bus architec-
ture (AMBA) interconnection architecture used in an FPGA.
In AMBA, access to slaves is multiplexed between masters
and different masters can use different peripherals simulta-
neously. A conceptual view of a system is depicted although
not implemented. The interconnection architecture is syn-
thesized separately, as is the processor. No application is de-
scribed.

This work combines both of the above categories, since
an application and a working prototype is implemented on
the proposed architecture. The architecture itself is con-
structed of IP blocks and a general purpose interconnec-
tion architecture with support for an OCP-IP interface [23],
which is a standard interconnection interface. A standard-
ized IP block interface along with high scalability ensures the
future use of the architecture.
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Figure 1: High-level view of the architecture on an FPGA develop-
ment board.

3. MPSOC ARCHITECTURE

In this section we present our novel architecture for multi-
processor systems. The key elements of the architecture are
processor programmability and scalability and flexibility that
are obtained with the HIBI on-chip network [4]. A high-level
view of the architecture is depicted in Figure 1. It contains
a parameterizable number of soft-core processors, an HIBI
network, direct memory access (DMA) blocks (N2H2), and
two external memories located on the development board.
In this case, external SRAM memory is used for instructions
for all processors. HIBI is used to access the external SDRAM
memory, which is used for shared data, and to let processors
to send messages directly to each other.

3.1. Heterogeneous IP block interconnection v.2

HIBI is a hierarchical interconnection for SOCs, which was
originally developed for ASICs. The objective of HIBI is to
provide a topology-independent, scalable, yet high-perform-
ance on-chip network. It is highly configurable and supports
multiple clock domains. To provide maximum efficiency,
there are no empty cycles during bus transfers under a high
load. Split transactions are used in read operations. Bus ca-
pacity is fully exercised by starting new transfers right after
the preceding one has finished. The HIBI network can be
reconfigured at run-time, using a configuration RAM. This
should not be confused with FPGA reconfiguration.

The basic building block of the HIBI network is an HIBI
wrapper. As HIBI utilizes distributed arbitration, each HIBI
wrapper is responsible for seizing the bus at right time. The
main characteristics of HIBI are presented in Table 1 [1]. In
Figure 1, three processors and an SDRAM controller form
one segment, Clock domain 1, and the rest of the processors
form another segment, Clock domain 2. There is no mas-
ter/slave configuration in the interconnection and, thus, ev-
ery IP block can freely access any other IP block. An HIBI
bridge is used to connect the segments together to allow

Table 1: Summary of HIBI characteristics.

Property HIBI implementation

Topology
Hierarchical bus with wrappers

and bridges between bus segments

Interface FIFO, OCP

Clocking Multiple clock domains

Arbitration Distributed, pipelined

Arbitration Priority, round-robin, time division

algorithm multiple access (TDMA), or combination

Synthesis-time
configurable
parameters

FIFO sizes, data width, addresses,

initial configuration, number of

configuration pages and their type

(RAM or ROM), included properties

Run-time
All arbitration parameters and algorithm,

configurable
cycle counters, power mode

parameters

Quality-of- TDMA, send limit + priority/round-robin,

service (QoS) multiple priorities for data, fast reconfiguration

Bus resolution OR-network

Addressing
Multiple addresses per IP, multiplexed

in the bus with data, allows multicast

transfers between segments. Every wrapper is assigned an ad-
dress space, which can vary depending on the number of
wrappers and the need for different addresses per wrapper.
When data is sent via HIBI, only the destination address is
delivered. In order to distinguish between different sources,
each source must use a separate destination address within
the recipients address space.

There are several different HIBI wrapper interfaces for IP
blocks. It is left to the designer to decide which interface is
the most appropriate, but there may be a mix of different
kinds of interfaces. For example, FIFO and OCP interfaces
can be utilized in the same architecture. Also, HIBI supports
multiple priorities for data. Optionally, there can be differ-
ent FIFOs for every priority. In that case, the highest priority
FIFOs are always treated first. Thus, they can interrupt lower
priority data transfers to get service immediately.

3.2. Soft-core processors

Currently, we have used soft-core processors Nios [24] and
Nios II [25, 26] in our architecture. The master processor is
Nios with a configuration shown in Figure 2. The peripherals
are timers, LEDs button parallel I/Os (PIOs), and an UART.
Nios can be used as a 16-bit or 32-bit processor, which af-
fects the data bus width. Nios always uses 16-bit instruction
words, which restricts the immediate values to five bits. With
prefix-instructions this is increased to 16 bits. A large num-
ber of prefix instructions reduces code efficiency.

Nios II is a 32-bit CPU with 32-bit instructions. Nios II
has more limited configurability. We use the fastest version,
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Nios II/f (fast) that provides 1.16 DMIPS/MHz and an area
consumption of around 2000 LEs. Nios II is used for video
encoding slaves with the configuration depicted in Figure 3.
Unlike Nios, Nios II uses tightly-coupled memory between the
processor and data RAM. Data does use the Avalon [21] bus
that significantly reduces the memory access time.

Nios natively use the Avalon bus to connect to memories
and peripherals. Avalon bus masters can command slaves,
but slaves can only get the attention of a master by raising
an interrupt. A typical master is a processor. A drawback is
that masters cannot communicate directly with each other.

Both Nios processors have separate instruction and data
buses. In Figures 2 and 3 only the data bus is drawn for
simplicity. The instruction bus connects to the boot ROM,
instruction memory (ext. SRAM), and vector table. With
the Avalon bus, there are 20 bus master address lines, 32
data lines, and waitrequest and read signals. Data bus mas-
ter has 20 address lines, two 32-bit data buses for read and
write, and signals waitrequest, read, write, irq and irq num-
ber. This makes 92-signal lines in total. There are possibly
other signal lines as well, but even with this practical mini-
mum, there are 146-signal lines in the buses. As a compari-
son, 32-bit HIBI bus consists of only 38-signal lines (32-bit
data, 3-bit command, address valid, lock, and full). In addi-
tion, HIBI supports interprocessor communication without
restrictions. The features of Avalon are not sufficient for data
intensive multiprocessor communication, motivating the use
of HIBI.

3.3. Nios-to-HIBI v.2 DMA

Nios processors do not have a native support for the HIBI
on-chip network. Therefore, a DMA block, Nios-to-HIBI v.2
(N2H2), was implemented to attach the processors to HIBI.
DMA minimizes CPU intervention in transfers. This allows
the CPU to execute the application while DMA transfers data
on the background.

N2H2 includes three Avalon interfaces. The slave inter-
face is used by a CPU to control and query N2H2. These con-
figuration and status registers include the state of the DMA
block, DMA transfer instructions, and DMA receiving in-
structions. Two master interfaces are used separately for re-
ceiving and transmitting. In order to increase the reusability,
these interfaces have been isolated from the other as much as
possible. Thus, with minimal modifications, the same block
can be applied to different processors.

The transmitter side is fairly straightforward. First, the
CPU writes the memory address (e.g., a pointer), the amount
of data, priority, and destination address to the configuration
register. Following this, the transmitter sends the address to
the HIBI. The transmitter then reads the data from memory
and instantly transfers the data.

Receiving is more complicated. Data sent through HIBI
may get fragmented. To circumvent this, we have imple-
mented multiple receiving channels that wait for a given
amount of data before interrupting the CPU. Each channel
can be configured to receive data from any source and save
it to memory locations defined by the CPU. There can be
several data transfers going on simultaneously, so N2H2 uses
the HIBI address to distinguish between them. For example,
if two sources are sending data simultaneously, two channels
are used. When the expected number of data has arrived on
a channel, the CPU is notified by an interrupt or via a poll
register.

Figure 4 depicts a data transfer over HIBI. CPU1 sends
four words to CPU2. On cycle 0, CPU1 gives a start com-
mand to the N2H2 DMA. IRQ is acknowledged in clock cy-
cle 1 and the transfer is started immediately. The address is
sent first and then the data. Clock cycles 3–8 are consumed
by the HIBI wrapper and arbitration latency. During this de-
lay, another transmission can be proceeding in HIBI, so the
latency is hidden. When the access to the HIBI is gained, the
address and the data are sent forward in clock cycles 9–13.
The data propagates through the receiving unit and buffers
until at clock cycle 15 N2H2 sees the address and determines
the right channel. Clock cycles 16–19 are used to store the
data in the memory of the CPU2. After all the data expected
has been received, an IRQ is given to the CPU2 at clock cycle
21.

4. MPEG-4 SOFTWARE IMPLEMENTATION

One of the key advantages of data parallel encoding methods
is that they enable scalability by using macroblock row, mac-
roblock, or block-level image subdivision. Moreover, spatial
data parallelization can be performed with vertical, horizon-
tal, rectangular, or arbitrary shaped slices. The problem of
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Figure 5: (a) Motion vector dependency problem in vertical parallelization and (b) horizontal parallelization for distributed memory ma-
chines.

vertical parallelization, shown on the left side of Figure 5, is
that predictive coding is not considered, leading to motion
vector (MV) and DQUANT (denoting changes in quantiza-
tion parameter (QP)) dependency problems [27]. For exam-
ple, H.263/MPEG-4 vector prediction is performed by com-
puting the median of three neighboring vectors referred to
as MV1, MV2, and MV3 in Figure 5. Due to data-dependent
computations and the different shape of slices, computations
do not proceed in a synchronized manner in different slices.
For this reason, a data dependency problem arises in the slice
boundaries where one of the predictor vectors may not be
available.

Horizontal spatial partitioning, however, is natural to
raster scan macroblock (MB) coding. The right side of Figure
5 depicts our previous implementation on a distributed
memory DSP using MB row granularity [27]. The recon-
structed images are made slightly overlap to allow motion
vectors to point over slice boundaries. The overlapping areas
are also exchanged between processors after local image re-
construction. Prediction dependencies are eliminated by in-

serting slice headers such as H.263 group-of-block (GOB) or
MPEG-4 video packet headers (VPH) in the beginning of a
slice. Clearly, this results in some overhead in the bit stream
but prediction dependencies are avoided. In addition, inter-
processor communication and extra memory is needed to
implement the overlapping.

However, a drawback of [27] is a somewhat coarse gran-
ularity leading to unbalanced computational loads due to the
unequal size of slices. For this reason, the original approach is
improved by subdividing images using macroblock granular-
ity as in Figure 6. Interprocessor communication and over-
lapping are further avoided by exploiting a shared memory
in an MPSOC type of platform. The new method is highly
scalable since the whole image is assignable to a single proces-
sor while the largest configuration dedicates a processor for
each MB. No interprocessor communication is needed since
data can be read directly from the global memory buffer.
The shared memories, however, are potential bottlenecks,
and thus efficient techniques for hiding transfer latencies are
needed.
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The data parallelization in Figure 6 was implemented
with a master control program and slave MPEG-4 encoders.
In addition, a host PC program has been implemented as
a user interface. It should be noted that the master and
the slave refer to the encoding processors, not, for exam-
ple, to the Avalon bus master or slave used for Avalon com-
munication. The flow graphs and the synchronization of
SW are depicted in Figure 7 while the implementation and
the integration details of the master and the slave proces-
sor are discussed in Section 5. The master processor con-
trols and synchronizes the encoding. The tasks of the host
PC, the master, and the slaves are presented in the follow-
ing.

4.1. Software implementation

The host PC implements a user interface for inputting en-
coding parameters to the master. The user interface enables
the selection of a video format (resolution and frame rate),
bit rate control mode (constant or variable), quantization
parameter (QP), as well as the number of slaves used in
the encoding. The host PC and the master can communi-
cate via a custom UDP/IP-based messaging protocol, which
supports its own flow control, retransmissions, packet struc-
tures, fragmentation, and assembly. Our messaging protocol
allows real-time modification of the frame rate, QP and bit
rate parameters during the encoding.

The tasks of the host PC also include capturing and load-
ing a raw video image, sending the raw data to the master
and decoding the output. Received bits are stored to the local
disk for debugging. In addition, the host PC measures statis-
tics such as the average encoding frame rate and bit rate. At
any time, the host PC can issue a reinitialization command
to stop the encoding, release dynamically allocated SW re-
sources, for example, memory, and return to the initial state.
For example, this feature enables changes in the video reso-
lution and the number of slaves without rebooting the plat-
form. Also, prototyping and testability are improved since
several video formats can be successively tested by changing
the parameters.

The tasks of the master are illustrated in the middle of
Figure 7. To encode a frame, the master first waits for the
parameters from the host PC. Next, the PC sends the raw
image (one frame at a time). The master slices the received
image, configures the slaves, and signals them to start the en-
coding. As the slaves complete, each informs the master that
it has finished. After all the slaves have completed encoding,
the master finds out the sizes of the bit streams of the slaves,
merges the bit streams, and sends the merged bit stream (en-
coded image) to the PC.

Slave tasks are illustrated on the right of Figure 7. First,
the slave waits for the parameters from the master. Then,
the slave downloads a local motion estimation (ME) window
and pixels of the corresponding image macroblock. Then, it
encodes the macroblock. This continues as long as there are
macroblocks in the slice left to encode. If the local bit buffer
goes full, the bits are uploaded to the external image mem-
ory. After all the macroblocks have been encoded, the slave
uploads the bit buffer to the external memory and begins to
wait for the next slice.

The video encoder can run in two different modes: first,
it can run in real-time, so one frame at a time is transferred
forth and back. Second, it can run in buffered mode, where
the PC downloads a video sequence to the master. It is en-
coded as a whole and sent back to the PC. The video sequence
length is parameterizable. Buffered mode mimics a situation
where, for example, a video camera is attached to the system
and feeding the encoder.

5. INTEGRATION

We have now presented a highly scalable hardware platform
and a data parallel video encoder. Their integration is pre-
sented in the following. The main properties of the Stratix
FPGA chip [28] used for this project are given in Table 2. A
logic element (LE) contains a four input look-up table and
a flip-flop. A digital signal processing (DSP) block contains
multiply-and-accumulate (MAC) blocks. These blocks can
also be used as fast embedded multipliers, which are uti-
lized by the processors. Phase-locked loops (PLL) are used
to generate different clock frequencies. Embedded memory
provides on-chip storage.

Apart from the Stratix 1S40 FPGA, the development
board offers two UARTs and an Ethernet connection. It has
8 MB of external Flash memory, 1 MB of external SRAM
memory, and 16 MB of external SDRAM memory. Down-
loading and debugging is done via a JTAG connection.

5.1. Initial constraints for the architecture

The application requires 64 KB local data memories. As this
memory is used for stack and local variables, it needs to be
fast on-chip memory. Also, some memory is used for in-
struction caches. Thus, the limited amount of on-chip RAM
in the FPGA bounds the maximum number of processors
to four. Optionally, external memories could be used, but
the development board does not contain any free, suitable
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Figure 7: Software flow graphs and task synchronization.

Table 2: Stratix 1S40 FPGA properties.

Feature Stratix 1S40 contains

Logic elements (LEs) 41 250

Embedded memory, RAM (bits) 3 423 744

DSP blocks 14

PLLs 12

memories as the external SRAM and external SDRAM are
already utilized. Therefore, at maximum one master pro-
cessor and three slaves are used. The amount of the LEs
in the FPGA is more than sufficient to allow for scalabil-
ity.

Three different memories are used for the video encod-
ing: the on-chip embedded memory, the external SRAM, and
the external SDRAM. The flash memory is only used to con-
figure the FPGA upon power-up. The same encoding soft-
ware can be used for all slaves, which provides an oppor-
tunity to use the same instruction memory for all of them.
As the application fits to 512 KB, the 1 MB SRAM memory
was divided evenly between the master and the slave proces-
sors. To reduce the shared memory contention, instruction
memory caches were used. Each cache utilizes 8 KB of on-
chip memory.

The video encoder was configured in such a way that a
64 KB of local data memory is sufficient for each proces-
sor. Small buffers and memories like 2 KB boot program
ROMs were also assigned to the on-chip memory. The ex-
ternal 16 MB SDRAM was allocated as the frame memory.
A custom SDRAM controller was implemented with special
DMA functions. General block transfer commands are im-
plemented with an option to support application-specific
commands. For example, we have currently implemented
a command for an automatic square block retrieval, for
instance an 8 × 8 block, for the video encoder application.
In this way we need to commit only a single transfer instead
of eight separate transfers. However, the SDRAM controller
is fully reusable and can also be used without the application-
specific features. The control interface also supports sequen-
tial block writes and reads, increasing the efficiency com-
paring to single write/read operations. The SDRAM DMA
is configured with the highest priority messages. However, in
practice, using higher priority does not have a notable effect
on performance in this application.

5.2. Configurations of the components

The exact configurations of the processors are shown in Fig-
ures 2 and 3. The bus to the external SRAM goes through the
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master processor in practice, as opposed to the architecture
shown in Figure 1. Slaves have no access to the address space
of the master. Master, however, can access the slave portion
of the memory. That gives an opportunity to reconfigure the
slaves at run-time, changing the program on the fly. This fea-
ture is not utilized in the presented encoder. The data RAM in
all CPUs is dual-port, the alternate port is used by the N2H2.
Slave UARTs are multiplexed so that the PC can monitor any
of the slaves. Timers are used for benchmarking and profil-
ing the program. The master needs an extra timer to be used
with the Ethernet.

HIBI is configured as a 32-bit wide single bus and used
with the single-FIFO interface. HIBI uses priority-based ar-
bitration, in which the master processor has the highest pri-
ority. Each of the HIBI wrappers has a five words deep low
priority data FIFO and a three words deep high priority
data FIFO. The HIBI bus single burst transfer length is lim-
ited to 25 words. Each N2H2 has eight Rx channels, sup-
ports 256 separate addresses for channels and has a maxi-
mum packet size of 65536 32-bit words. HIBI bridges are not
used, because there is no need for multiple clock domains.
The MPEG-4 encoding SW exploits the MPSOC features as
explained in the following sections.

5.3. Implementation of master’s tasks

The tasks of the master are discussed in Section 4 and il-
lustrated in the middle of Figure 7. All parameterization is
performed via the external shared SDRAM. However, since
N2H2 DMA is used to access the shared data memory,
SDRAM, one cannot refer to SDRAM via pointers. For exam-
ple, the C language statement sdramVariable = pSdramAddr
[0] is not possible. Instead, data between external and local
memories is moved with help of dedicated software library
calls, for example, sdramRead ( ) and sdramWrite ( ).

The current 64 KB limitation of the local data memory,
however, presents a more demanding challenge considering
that a raw QCIF image takes 37.1 KB. Our solution is to al-
locate large memory buffers, such as the currently encoded
image, the reconstructed images, and the output bit buffers,
on the external SDRAM. Two additional 1KB buffers are al-
located on the on-chip RAM, which are used for processing
data from the large buffers a small segment at a time.

For example, bit stream merging is implemented as a
three-step process, illustrated in Figure 8, which is repeated
in a loop. As long as there are slave bits remaining, the master
first reads a small portion of the slave’s bit stream into the in-
put buffer A. Second, the master concatenates and shifts the
data after the tail of the master’s global bit buffer in buffer B.
Third, the master writes the result to the SDRAM and resyn-
chronizes the buffer B with the updated tail of the global bit
buffer. The tail contains the bits that did not form a full 32-
bit word. The tail is stored to the SDRAM to keep the buffers
synchronized, but the master uses the local copy to avoid un-
necessary memory traffic. This allows merging of large, ar-
bitrary sized bit streams, and realizes a general merging pro-
cedure for variable length coded (VLC) streams that are not
aligned to byte boundaries. A similar buffering scheme is also

Read segment of slave bits

Master’s local mem.

Buffer A

Merge

Buffer B

Write

Slave’s bit buffer

Global bit buffer SDRAM

1.

2.

3.

Figure 8: Master’s bit stream merge task.

used in the “send bits” phase of the master, except no bit
shifting is needed since the bit stream is ensured to be byte
aligned by the implementation.

5.4. Implementation of slaves’ tasks

Our MPEG-4 encoder software is identical to [29] except
that all DSP specific optimizations have been omitted. A
platform-independent portable ANSI-C implementation has
been used for Nios II. A single program multiple data
(SPMD)-approach has been used, so the slave programs are
identical. The program execution is, however, greatly depen-
dant on the data, so the execution flows differ from one CPU
to another. Slave tasks are discussed in Section 4 and illus-
trated in the right side of Figure 7.

The slaves have to operate under low memory conditions.
To circumvent this issue, the ME process is carried out in a
48 × 48 sliding window under the programmers control as
illustrated in Figure 9(a). The ME window moves in a raster
scan pattern centered on the current MB position. An ex-
ception is an image boundary, where the window is clipped
inside the image. The ME window loading is optimized by
packing four consecutive pixels into a 32-bit word. Further-
more, the overlapping of subsequent ME window positions
could be used to minimize accesses to the external memory.

Figure 9(b) shows two approaches for updating the ME
window. First, one can load a whole window from SDRAM
every time the MB position changes, for example, with DMA.
In the second approach, only the rightmost column is loaded
from SDRAM while the remaining pixels are copied inside
the on-chip memory. The data transmissions are executed
beforehand in the background in order to minimize the time
consumed by waiting for data to be processed.

The drawback of the first approach is high SDRAM band-
width requirement. For example, the ME of a 4CIF video
(704 × 576) at 30 frames/s demands 104 MB/s. In compari-
son, the second approach requires 34 MB/s but the drawback
is that 136 million operations per second (MOPS) are con-
sumed by load/store operations needed for copying. Con-
sidering that current SDRAM is fast, for example, 133 MHz
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32-bit SDRAM yields maximum of 4 bytes ∗ 133 M =
507 MB/s, the first approach is still a viable option due to
DMA [27]. Hence, the second approach is well suited for sys-
tems with slow SDRAM, while fast SDRAM and DMA can be
used to reduce CPU utilization. In this work, we support the
first approach because we have an efficient DMA that can be
used to minimize the CPU load. When ME is carried out, the
rest of the encoding is performed similar to a nonparallel en-
coder except that each slave works on a different slice. The
slave bit output uses a local/global buffering scheme compa-
rable to Figure 8.

6. RESULTS

The performance of our system is evaluated by measuring the
FPGA utilization, the encoding frame rate as a function of the
number of slaves, and the complexities of encoding tasks. All
timing and profiling procedures for measurements are im-
plemented with HW timers running at the CPU clock fre-
quency, 50 MHz. The system was benchmarked in buffered
mode, since the main concern is the pure video encoding
speed with no Ethernet activity.

The measurements were carried out with two standard
QCIF sequences carphone and news. The encoder was con-
figured to use IPPP. . . frame structure, where only the first
frame is Intra (I) coded while the rest are motion compen-
sated Inter (P) frames. All tests were done in variable bit rate
(VBR) mode where different bit rates are realized by chang-
ing QP. Video sequence relative input/output frame rates
were fixed to 30 frames/s in all test cases.

During a benchmarking run, 120 frames of the selected
test sequence were encoded. The average encoding frame rate
(FPSavg) is computed as

FPSavg(n) = fcpu

cframe(n)
, (1)

where fcpu is the CPU frequency and Cframe(n) denotes aver-
age encoding cycles per QCIF frame with n encoding slaves.

Due to the presence of data/instruction caches, IRQ process-
ing, and the underlying on-chip network causing deviations
in the results, three benchmarking runs were made and their
average is reported as the result. Scalability is evaluated by
computing the speed-up (S(n)) as

S(n) = FPSavg(n)

FPSavg(1)
, (2)

where FPSavg(n) is the average frame rate of a multislave con-
figuration and FPSavg(1) is the average frame rate with a sin-
gle slave. In addition, parallelization efficiency (E(n)) is com-
puted as

E(n) =
(

FPSavg(n)(
n∗ FPSavg(1)

)
)
∗ 100%. (3)

6.1. FPGA utilization

Table 3 shows the FPGA utilization of the MPSOC HW mod-
ules. The area consumption is reported in terms of Logic El-
ements (LE) and mem usage is the utilization of the on-chip
RAM. The statistics have been obtained by synthesizing MP-
SOC with Quartus II 5.0 into a Stratix 1S40. Currently, the
maximum frequency (50 MHz) is dictated by the connection
to external SRAM. Total memory and area refer to the max-
imum capacity of the FPGA chip. Memory figures are deter-
mined from the theoretical maximum number of the avail-
able memory bits. However, if we also count the bits that can-
not be used due to the memory block architecture, the mem-
ory usage rises to 87% of the available memory resources.
Therefore, the memory utilization restricts the system and
not the logic utilization. The FIFO buffers in the system have
been implemented with on-chip RAM. We have also imple-
mented an FIFO using LE flip-flops as data storage. Thus, we
can optionally save the on-chip RAM and use the spare LEs
instead.

LE resources are abundant and have been exploited in the
architecture. For example, in the SDRAM controller, there
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Table 3: FPGA utilization statistics.

HW module Module count Total mem [KB] % of total mem Module area [LE] Total area [LE] % of LE

Master Nios I 1 80.8 19.3 2 720 2 720 6.6

Slave Nios II 3 225.1 53.9 2 324 6 972 16.9

N2H2 DMA 4 0 0 1 894 7 576 18.4

HIBI network 1 0.4 0.1 8 506 8 506 20.6

SDRAM DMA 1 0.3 0.1 3 205 3 205 7.8

Utilization 306.6 73.3 28 979 70.2
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Figure 10: Frame rates for sequence carphone.qcif (176× 144).

are four read and four write ports, ensuring that no CPU has
to unnecessarily wait. N2H2 has eight channels to provide
flexibility for the software programmer. There are spare LEs
on the FPGA, since only 70% have been utilized.

6.2. Encoding speed and software scalability

Figures 10 and 11 present average encoding frame rates as a
function of QP and the number of slaves for the carphone and
news QCIF sequences. The bit rates are reported relative to
the fixed 30 frames/s sequence output rate. The straight lines
depict an ideal speed-up, which is obtained by multiplying
the frame rate of a single slave with the number of slaves. The
frame rates are measured from the master’s main encoding
loop.

As scalability was one of our main objectives, the results
indicate very good success. The parallelization efficiency of
carphone using two slaves is within 97% of the ideal result. If
we further increase the number of slaves to three, the paral-
lelization efficiency is 93%. As the current FPGA restricts the
number of processors to four (one master and three slaves),
we estimate the performance of larger configurations in the
following.

6.2.1. Performance estimation for larger configurations

The complexity of image encoding task depends on slice en-
coding times as well as the overhead of the master. This

3
4
5
6

7
8

9
10

11
12
13

Fr
am

es
(s

)
1 2 3

Number of encoding slaves

Ideal
QP = 25 (21 kbps @ 30 fps)
QP = 12 (52 kbps @ 30 fps)
QP = 4 (199 kbps @ 30 fps)

Figure 11: Frame rates for sequence news.qcif (176× 144).

information yields

Cimg
(
x, y,n,Cmb

) = Cslice
(
x, y,n,Cmb

)
+ Cmaster(n), (4)

where Cimg is the clock cycles required to encode a frame, x
and y are the width and height of the luma image in pixels,
n is the number of encoding processors, and Cmb is the aver-
age clock cycles required to encode a macroblock. The term
Cmaster denotes the master’s overhead resulting from the se-
quentially computed parts. Cslice represents parallelized com-
putations and is the number of clock cycles required to en-
code the largest slice in the system. Mathematically Cslice is
computed as

Cslice =
⌈�x/16� ∗ �y/16�

n

⌉
∗ Cmb, (5)

where the rounding for x and y takes care that the image is
always divisible to macroblocks, for example, x and y do not
need to be divisible by 16. The overall rounding finds the size
of the largest slice in case the number of macroblocks is not
evenly divisible by the number of processors.

The master’s overhead results from four subfunctions
which can be combined as

Cmaster(n) = Cconfig(n) + CgetBitStreamSize(n)

+ Cmerge(n) + Coth(n),
(6)

where Cconfig is due to the configuration of encoding param-
eters for the slaves, CgetBitStreamSize results from reading the
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Table 4: Measured clock cycles for Master’s subfunctions.

f (subfunction) 1 slave CPU 2 slave CPUs 3 slave CPUs

Merge 32876.4150 38009.8750 43160.7267

Config 2821.6367 5313.8333 7878.8450

GetBitStreamSize 1264.2967 2517.6617 3772.6450

Oth 117016.7367 117465.5550 117982.0483
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Figure 12: Growth rate of complexity of master’s subtasks.

sizes of slave bit streams from SDRAM, Cmerge is the num-
ber of clock cycles due to merging of slave bits streams, and
others are related to the IRQs of the master and an internal
state management. It is pointed out that for an optimized
system, all Ethernet related tasks are omitted. The measured
average clock cycles for the aforementioned subfunctions are
presented in Table 4 as a function of the number of encoding
processors. In Table 4, f identifies the subfunction.

For the mathematical model, it is necessary to model the
growth of the master task complexity as a function of n. The
complexity change is illustrated in Figure 12, which is plotted
using the values in Table 4. For each subfunction, a curve was
obtained by plotting the clock cycles with n encoding proces-
sors divided by the clock cycles required for one encoding
CPU.

The results in Figure 12 show a linear increase in com-
plexity for all subfunctions of the master. Therefore, the
complexities of each subfunction as a function of n are
approximated with

Cf∈{merge, config, getBitStreamSize, oth}(n)

= (a( f )∗ n + b( f )
)∗ c( f ),

(7)

where a is the slope of the line (the gradient) and b is the
intercept on the vertical axis in Figure 12, and c is the number
of clock cycles of a subfunction with one encoding processor.
In practice, the clock cycles of one encoding processor are
scaled with the linear model to obtain a prediction for an n
CPU system. The subfunction specific parameters for (7) are
presented in Table 5.

Table 5: Parameterization of linear equations for complexity mod-
eling.

f (subfunction) a( f ) b( f ) c( f ) (CPU cycles)

Merge 0.1564 0.8436 32876.4150

Config 0.8961 0.1039 2821.6367

GetBitStreamSize 0.9920 0.0080 1264.2967

Oth 0.0041 0.9959 117016.7367
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Figure 13: Estimated frame rate for n-processor MPSOC system.

Due to the simultaneous access to the shared data mem-
ory at the beginning of each frame encoding, the slave’s start-
up latency, that is, the time to get enough data to start pro-
cessing, also increases as the number of slaves increase. This
time is not included in the estimate. Each slave requires one
motion estimation window, 2560 bytes (640 words), to start
processing. It can be assumed that this amount can be trans-
ferred from SDRAM to CPU in around 1000 cycles. Thus,
since the frame encoding time is millions of clock cycles, the
impact is quite insignificant.

Finally, the encoding frame rate estimation on the
MPEG-4 MPSOC system is computed with

FPSMPSOC
(
x, y,n,Cmb, fcpu

) = fcpu

Cimge
(
x, y,n,Cmb

) , (8)

where fcpu is the clock frequency of 50 MHz. With bench-
marking it was found that Cmb is on the average of 133394.8
clock cycles per macroblock for carphone if a QP value of 12
is used.

Figure 13 presents the predicted encoding frame rate for
the optimized MPSOC as a function of n for the QCIF video
format. The values are obtained with (8) using the param-
eters in Table 5. The system scales nearly linearly when n is
smaller than 12. After 12 encoding processors, the complex-
ity of the master’s sequential overhead starts to increase faster
than is the benefit of data parallelization and the frame rate
saturates after 24 slaves. The small variation at large n is due
to the unbalanced sizes of slices.

One solution to smooth out the variations would be to
use a finer subdivision granularly, for example, 8 × 8 or
4× 4 blocks, but this is impractical from an implementation
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Figure 14: Ideal, measured, and estimated frame rates for car-
phone.qcif (176× 144).

point of view since a macroblock would span two processors.
In practice, advanced horizontal parallelization scales better
than the row-wise approach used in [27] due to finer granu-
larity.

Figure 14 shows that the model applies well to real, mea-
sured performance. It is slightly lower than the measured
frame rates with the maximum error being about 4%. The
model is applicable to QCIF video streams and also for larger
formats by changing the measured execution times appro-
priately. It takes into account the number of macroblocks
and as the number of processors increases, the sizes of slices
may not be equal in terms of number of macroblocks result-
ing in computational unbalance. However, if we use a larger
video size, for example CIF, the number of macroblocks also
increases. Therefore, with larger video sizes, we can benefit
from having more processors than is currently practical for
QCIF.

6.3. Relative complexity of encoding tasks

The complexities of different CPU tasks show how comput-
ing power is shared within one processor. For the master pro-
cessor, up to 96% of the time is spent waiting the slaves to
complete. In buffered mode, frame transmissions over the
Ethernet are not executed until the whole video sequence is
encoded and thus, this time is not included in the utilization
figures. In this case, the master operates as a state machine.
However, the master processor is designed to handle all the
external tasks that are not directly related to the video en-
coding. This can include I/O handling (e.g., Ethernet proto-
col stack), audio coding, and user interfaces, like changing
quantization parameters at run-time. The greatest require-
ment is fast response time for the user interface processor.
Double buffering could also be used.

Figure 15 illustrates how the execution time is divided for
one slave processor to encode one macroblock. Motion esti-
mation (ME) is by far the most computationally challenging
task. Other time consuming tasks are interpolation, quanti-
zation (Q), inverse quantization (IQ), DCT, and IDCT. The

time for MasterWait + Poll is consumed by waiting for the
master to collect and merge the bit stream, deliver a new raw
slice, and provide the MPEG-4 coding parameters for next
frame.

6.4. Hardware scalability

HIBI offers good scalability. For this architecture, adding or
removing processors is simple—it only takes minutes to pa-
rameterize and prepare for synthesis. HIBI also offers a con-
venient way to add new IP components, for example new
processors or hardware accelerators. It is possible to add new
features to the system without altering the video encoding.
A simple example is the addition of a hardware utilization
monitor. The addition does not require any changes to the
encoding and it is easy to plug into the system by just adding
one HIBI wrapper to the interconnection. Encouraging pre-
liminary results have been obtained from attaching a hard-
ware accelerator (DCT, IDCT, quantizer, and inverse quan-
tizer) to the system (around a couple of FPS increase).

The utilization of the HIBI bus is measured to be only
3%. Therefore, the interconnection is not likely to become
a bottleneck even with larger configurations. From a perfor-
mance point of view, the interconnection architecture should
be as invisible as possible in hiding data transmission time
from the CPU.

The speed-up gained by adding processors (e.g., Figure
10) shows that the interconnection architecture performs
well. Figure 15 shows that only 4% (SDRAM config + comm
wait) of the CPU encoding time is spent on data transmis-
sions and waiting for data.

As the HIBI utilization is low, it is expected that the
shared data memory (SDRAM) will not become the bottle-
neck in the future. We have determined that the intercon-
nection is capable of transmitting the required data for a
CIF image, which is four times larger at 25 frames/s using
a clock frequency of 28 MHz without forming a significant
performance bottleneck. The application can perform data
fetches from memory in parallel with computation. There-
fore, memory latencies can be tolerated.

Shared instruction memory utilization, via the Avalon
bus, is at most 20% of available bandwidth. We have inves-
tigated the effect of shared instruction memory on perfor-
mance and preliminary results indicate that it is currently
negligible with respect to total frame encoding time. How-
ever, four processors could share one instruction memory
port. The absolute maximum for sufficient performance [30]
is ten processors per port.

6.5. Comparison of scalability to related work

In Figure 16, the scalability of different video encoders is pre-
sented. The optimal situation would be a gain of 100% par-
allel efficiency, that is, a speed-up of 2.0 for 2 CPUs and 3.0
for 3 CPUs. Of the four general categories of parallelization,
results from three are presented. No publications were found
that describe a functional parallel encoder that scales with a
varying number of processors.
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Figure 16: Speed-ups of different video encoder implementations.

Nang and Kim [8], Agi and Jagannathan [9], and Barbosa
et al. [10] use temporal parallelism. Nang et al. have received
great parallelization efficiency. However, as temporal paral-
lelism needs frames to be buffered (increasing the latency) it
is not considered to be low-latency real-time video encoding.
In our work we present a data parallel application. Similar
works are Peng and Zhao [11], Akramullah et al. [12], and

Yung and Leung [13]. One work based on video-object par-
allelism, which is closely related to data parallelism, is pre-
sented in He et al. [14].

The results from related research are frequently presented
as speed-up or frame rate curves, so the exact numerical val-
ues cannot be obtained. We have reproduced the curves in
Figure 16 to be as accurate as possible. Results from Nang and
Kim, Agi and Jagannathan, He et al., and Yung and Leung are
plotted. Barbosa et al. have given results for three cases. The
result for 16 CPUs is estimated from the sketched figure. Our
results are from the model described earlier. Results for Peng
and Zhao and Akramullah et al. are plotted from the given
numerical figures.

Figure 16 shows that the scalability of our implementa-
tion is the highest of all data parallel implementations. That
implies both good parallelization efficiency achieved with
software and an efficient hardware architecture.

7. CONCLUSIONS

A highly scalable MPSOC architecture with an MPEG-4 en-
coder has been presented. The parallelization efficiency of the
application, when the number of encoding processors is in-
creased from one to two, is 97% and to three, 93%. No real-
time video encoder was found that has such a high scalability
for real-time video encoding. Our benefit is due to both a
well-designed architecture and application. The architecture
efficiently hides the data transmissions from the processors.
The software takes full advantage of the parallelism by ele-
gantly sharing the encoding load. The software does not need
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any changes when the number of processors is altered, thus
the scaling effort is very low.

The scalability and flexibility of the MPSOC architec-
ture is gained by using an HIBI on-chip network and soft-
core processors in a plug-and-play fashion. The performance
and area usage can be flexibly compromised by changing the
number of processors. It takes only minutes to change the
number of processors and then the new system is ready to
be synthesized. Since the architecture is implemented in an
FPGA, the amount of on-chip memory becomes a limiting
factor.

In the future, platform flexibility will be demonstrated
with the use of different soft-core processors and hardware
accelerators. The connection to external instruction mem-
ory will be replaced with an HIBI interface to achieve bet-
ter clock frequencies. Furthermore, scalability will be further
evaluated with larger FPGA chips and by connecting several
ones together to form a larger system.
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Marko Hännikäinen received the M.S. de-
gree in 1998 and the Ph.D. degree in 2002,
both from Tampere University of Technol-
ogy (TUT). Currently he acts as a Senior
Research Scientist in the Institute of Dig-
ital and Computer Systems at TUT, and
a Project Manager in the DACI Research
Group. His research interests include wire-
less local and personal area networking,
wireless sensor and ad hoc networks, and
novel web services.



Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2006, Article ID 16035, Pages 1–12
DOI 10.1155/ES/2006/16035

A Real-Time Wavelet-Domain Video Denoising
Implementation in FPGA
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1. INTRODUCTION

Video denoising is important in numerous applications, such
as television broadcasting systems, teleconferencing, video
surveillance, and restoration of old movies. Usually, noise re-
duction can significantly improve visual quality of a video as
well as the effectiveness of subsequent processing tasks, like
video coding.

Noise filters that aim at a high visual quality make use of
both spatial and temporal redundancy of video. Such filters
are known as spatio-temporal or three-dimensional (3D) fil-
ters. Often 2D spatial filter and 1D temporal filter are applied
separately, and usually sequentially (because spatial denois-
ing facilitates motion detection and estimation). Temporal
filtering part is often realized in a recursive fashion in order
to minimize the memory requirements. Numerous existing
approaches range from lower complexity solutions, like 3D
rational [1] and 3D order-statistic [2, 3] algorithms to so-
phisticated Bayesian methods based on 3D Markov models
[4, 5].

Multiresolution video denoising is one of the increas-
ingly popular research topics over recent years. Roosmalen et
al. [6] proposed video denoising by thresholding the coeffi-
cients of a specific 3D multiresolution representation, which

combines 2D steerable pyramid decomposition (of the spa-
tial content) and a 1D wavelet decomposition (in time). Re-
lated to this, Selesnick and Li [7] investigated wavelet thresh-
olding in a nonseparable 3D dual-tree complex wavelet rep-
resentation. Rusanovskyy and Egiazarian [8] developed an
efficient video denoising method using a 3D sliding window
in the discrete cosine transform domain. Other recent mul-
tiresolution schemes employ separable spatial/temporal fil-
ters, where the temporal filter is motion adaptive recursive
filter. Such schemes were proposed, for example, by Pižurica
et al. [9] where a motion selective temporal filter follows the
spatial one, and by Zlokolica et al. [10] where a motion-
compensated temporal filter precedes the spatial one. Less
research was done so far towards hardware design of these
multiresolution video denoising schemes.

The use of the FPGAs for digital signal processing has
increased with the introduction of dedicated multipliers,
which facilitate the implementation of complex DSP algo-
rithms. Such architectures are especially effective for data-
intensive applications with extremes in data throughput.
With examples for video processing applications Draper et al.
[11] present performance comparison of FPGA and general-
purpose processors. Similarly, Haj [12] illustrates two dif-
ferent wavelet implementations in the FPGAs and compares
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these with general-purpose and DSP processors. Both studies
come to the conclusion that the FPGAs are far more suitable
for real-time video processing in the wavelet domain than
any available processor, DSP or general-purpose.

The hardware implementation of the wavelet transform
is related to the finite-impulse-response (FIR) filter design.
Recently, the implementation of FIR filters has become quite
common in the FPGAs. A detailed guide for the FPGA filter
design is in [13] and techniques for area optimized imple-
mentation of FIR filters are presented, for example, in [14].
A number of different techniques for implementing the crit-
ically sampled discrete wavelet transform (DWT) in the FP-
GAs exist [15–21] including the implementation of MPEG-
4 wavelet-based visual texture compression system [22]. Re-
cently, the lifting scheme [23–25] is introduced for real-
time DWT [20, 26] as well as the very-large-scale-integration
(VLSI) implementation of the DWT using embedded in-
struction codes for symmetric filters [27]. The lifting scheme
is attractive for hardware implementations because it re-
places multipliers with shift operations. The FPGA imple-
mentations of overcomplete wavelet transforms are much
less studied in literature.

Our initial techniques and results in FPGA implementa-
tion of wavelet-domain video denoising are in [28, 29]. These
two studies were focusing on different aspects of the devel-
oped system: implementation of the wavelet transform and
distributed computing over the FPGA modules in [28] and
customization of a wavelet shrinkage function by look-up
tables for implementation in read-only-memories (ROMs)
[29]. The description was on a more abstract level focusing
on the main concepts and not on the details of the architec-
tural design.

In this paper, we report a full architectural design of
a real-time FPGA implementation of a video denoising al-
gorithm based on an overcomplete (nondecimated) wavelet
transform and employing sophisticated locally adaptive
wavelet shrinkage. We propose a novel FIR filter design for
the nondecimated wavelet transform based on the algorithm
à trous [30]. The implemented spatial/temporal filter is sepa-
rable, where a motion-adaptive recursive temporal filter fol-
lows the spatial filter as was proposed in [9]. We present an
efficient customization of the locally adaptive spatial wavelet
filter using a combination of read-only-memories (ROMs)
and a dedicated address generation network. We design an
efficient implementation of a local window for wavelet pro-
cessing using an array of delay elements. Our design of the
complete denoising scheme distributes computing over two
FPGA modules, which switch their functionality in time:
while one module performs the direct wavelet transform of
the current frame, the other module is busy with the in-
verse wavelet transform of the previous frame. After each
two frames, the functioning of the two modules is reversed.
We present a detailed data flow of the proposed scheme. For
low-to-moderate noise levels, the designed FPGA implemen-
tation yields a minor performance loss compared to the soft-
ware version of the algorithm. This proves the potentials of
the FPGAs for real-time implementations of highly sophisti-
cated and complex video processing algorithms.

The paper is organized as follows. Section 2 presents an
overview of the proposed FPGA design, including the mem-
ory organization (Section 2.1) and data flow (Section 2.2).
Section 3 details the FPGA design of the different build-
ing blocks in our video denoising scheme. We start with
some preliminaries for the hardware design of the non-
decimated wavelet transform (Section 3.1) and present the
proposed pipelined FPGA implementation (Section 3.2).
Next, we present the FPGA design of the locally adaptive
wavelet shrinkage (Section 3.3) and finally the FPGA imple-
mentation of the motion-adaptive recursive temporal filter
(Section 3.4). Section 4 presents the real-time environment
used in this study. The conclusions are in Section 5.

2. REAL-TIME IMPLEMENTATION WITH FPGA

An overview of our FPGA implementation is illustrated in
Figure 1. We use two independent modules working in paral-
lel. Each module is implemented in a separate FPGA. While
one module performs the wavelet decomposition of an in-
put TV frame, the other module performs the inverse wavelet
transform of the previous TV frame. The two modules switch
their functionality in time. The wavelet-domain denoising
block is located in front of the inverse wavelet transform.

The proposed distributed algorithm implementation
over the two modules allows effective logic decentralization
with respect to input and output data streams. Namely, while
one FPGA module is handling the input video stream per-
forming the wavelet decomposition, the other FPGA mod-
ule is reading the wavelet coefficients for denoising, sending
them to the wavelet reconstruction, and building up the vi-
sually improved output video stream.

2.1. Memory organization

The nondecimated wavelet transform demands significant
memory resources. For example, in our implementation with
three decomposition levels we need to store nine frames of
wavelet coefficients for every input frame. In addition, we
need an input memory buffer and an output buffer for iso-
lating data accesses from different clock domains.

The input data stream is synchronized with a 13.5 MHz
clock. For three decomposition levels the complete wavelet
decomposition and reconstruction has to be completed with
the clock of at least 3 × 13.5 = 40.5 MHz. The set-up of
our hardware platform requires the output data stream at
27 MHz. Table 1 lists the required interfaces of the buffers
that are used in the system.

The most critical timing issue is at the memory buffer for
storing the wavelet coefficients. It has to provide simultane-
ous read and write options at 40.5 MHz. Due to lack of the
SDRAM controller that supports this timing issue, the whole
processing is split in two independent parallel modules. The
idea is to distribute the direct and the inverse wavelet process-
ing between these modules. While one module is performing
the wavelet decomposition of the current frame, the other
module is performing the inverse wavelet transform of the
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Figure 1: A detail of the FPGA implementation of the proposed wavelet-domain video denoising algorithm.

Table 1: Memory interfaces.

Buffers Write port (MHz) Read port (MHz)

Input buffer 13.5 40.5

Wavelet coefficients buffer 40.5 40.5

Output buffer 40.5 27

previous frame. With such organization, one module reads
and the other module writes the coefficients. The approxima-
tion subband (LL band) during the wavelet decomposition
and composition is stored in the onboard SRAM memory.
This allows us to use only read or write memory port during
one frame.

2.2. Data flow

The data flow through all the memory buffers and both
FPGA’s in our scheme is shown in Figure 2. The total delay
is 4 frames. During the first 20 milliseconds, the input frame
A0 is stored in the input buffer at a clock rate of 13.5 MHz.
During the next 20 milliseconds, this frame is read from the
input buffer and is wavelet transformed in a 40.5 MHz clock
domain, with 3 decomposition scales W1(A0), W2(A0), and
W3(A0). In parallel to this process, the next frame A1 is writ-
ten in the input buffer. The following time slot of 20 mil-
liseconds is currently not used for processing A0, but is re-
served for future additional processing in the wavelet do-
main. Within this period the frame A1 is read from the in-
put buffer and is decomposed in its wavelet coefficients. The
frames A0 and A1 are processed by FPGA1. The next input
frame, A2, is written in the input buffer, and is wavelet trans-
formed in the next time frame by FPGA2.

The denoising and the inverse wavelet transform of the
frame A0 are performed afterwards. During this period the
wavelet coefficients of the frame A0 are read from the mem-
ory, denoised and the output frame is reconstructed with
the inverse wavelet transform W−1(A0). During the last re-
construction stage (the reconstruction at the finest wavelet
scale), the denoised output frame is written to the output
memory buffer. Parallel to this process, FPGA2 performs the

wavelet decomposition of the frame A2 and the input frame
A3 is stored in the input buffer.

Finally, 4 × 20 milliseconds = 80 milliseconds after the
frame A0 appeared at the system input (4 frames later), it
is read from the output buffer in a 27 MHz clock domain
and is sent to the selective recursive temporal filter and to the
system output afterwards. The output data stream is aligned
with a 100 Hz refresh rate, which means that the same frame
is sent twice to the output within one time frame of 20 mil-
liseconds. Additionally, FPGA2 performs the wavelet decom-
position of the frame A3. Further on, A4 frame is written to
the input buffer and is decomposed in the following time
frame under the control of FPGA1.

In this scheme, the two FPGAs actually switch their func-
tionality after each two frames. The FPGA1 performs the
wavelet decomposition for two frames, while the FPGA2
performs the inverse wavelet transform of the previous two
frames. After two frames, this is reversed.

3. ALGORITHM CUSTOMIZATION FOR
REAL-TIME PROCESSING

We design an FPGA implementation of a sequantial spa-
tial/temporal video denoising scheme from [9], which is de-
picted in Figure 3. Note that we use an overcomplete (non-
decimated) wavelet transform to guarantee a high-quality
spatial denoising. In this representation, with three decom-
position levels the number of the wavelet coefficients is 9
times the input image size. Therefore we choose to perform
the temporal filtering in the image domain (after the in-
verse wavelet transform) in order to minimize the memory
requirements.

3.1. The customization of the wavelet transform

While hardware implementations of the orthogonal wavelet
transform have been extensively studied in literature [16–
21, 26, 27], much less research has been done towards
implementations of the nondecimated wavelet transform.
We develop a hardware implementation of the non-decimat-
ed wavelet transform based on the algorithm à trous [30] and
with the classical three orientation subbands per scale. This
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2D wavelet
transform

Denoising by
wavelet

shrinkage

Inverse
2D wavelet
transform

Pixel-based
motion detector

Selective
recursive filter

Figure 3: The implemented denoising scheme.

algorithm upsamples the wavelet filters at each decomposi-
tion level. In particular, 2 j−1 zeros (“holes,” in French, trous)
are inserted between the filter coefficients at the decomposi-
tion level j, as it is shown in Figure 4.

We use the SystemC library [31] and a previously devel-
oped simulation environment [32, 33] to develop a real-time
model of the wavelet decomposition and reconstruction.
Figure 5 shows the simulation model. After a number of
simulations and tests we have concluded that the real-time
wavelet implementation with 16 bit arithmetic gives practi-
cally the same results as a referent MATLAB code of the algo-
rithm à trous [30]. At a number of input frames there were
more than 97.13% errorless pixels with mean error of 0.0287.
Analyzing those figures at the level of bit representation, we

can conclude that maximally 1 bit out of 16 was wrong. The
wrong bit may occur on the bit position 0 shown in Figure 6.
Taking into account that input pixels are 8 bit integers we can
ignore this error.

3.2. The pipelined FPGA implementation of
the nondecimated wavelet transform

Here we develop an FPGA implementation of a nondeci-
mated wavelet transform with three orientation subbands
per scale. We design FIR filters for the algorithm à trous [30]
with the Daubechies’ minimum phase wavelet of length four
[34] and we implement the designed FIR filters with dedi-
cated multipliers in the Xilinx Virtex2 FPGAs [35].
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Our implementation of the 2D wavelet transform is line-
based as shown in Figure 7. We choose the line alignment
in order to preserve the video sequence input format and to
pipeline the whole processing in our system. The horizontal
and the vertical filtering is performed within one pass of the
input video stream. We avoid using independent horizontal
and vertical processing which requires two cycles and an in-
ternal memory for storing the output of the horizontal filter-
ing. Instead, we use the line-based vertical filtering with as
many internal line buffers as there are taps in the used FIR
filter.

The horizontal and vertical FIR filters differ only in the
filter delay path implementation. The data path of the hor-
izontal filter is a register pipeline as shown in Figure 8. The
data path of the vertical filter is the output of the line buffers.
Hence, the vertical FIR filter does not include any delay ele-
ments, but only the pipelined filtering arithmetics (multipli-
ers and an adder). Pipelining the filtering arithmetics ensures
the requested timing for data processing and we use this ap-
proach both for the horizontal and vertical filters.

The algorithm à trous [30] upsamples the wavelet filters
by inserting 2 j − 1 zeros between the filter coefficients at the

decomposition level j (see Figure 4). We implement this fil-
ter up-sampling by using a longer filter delay path and the
appropriate data selection logic. The required number of the
registers depends on the length of the mother wavelet func-
tion and on the number of the decomposition levels used. We
use a wavelet of length four and three decomposition levels,
and hence our horizontal filter in Figure 8 contains 3×4 = 12
registers. Four registers are dedicated to the 4-tap filter and
3 times as many are needed to implement the required up-
sampling up to the third decomposition level. Analogously,
on the vertical filtering side, each line buffer for vertical fil-
tering is able to store up to 4 lines.

For the calculation of the first decomposition level of the
wavelet transform, only the first 4 registers d0, d1, d2, and d3
in Figure 8 are used in the FIR filter register pipeline. At the
second decomposition level, the wavelet filters have to be up-
sampled with 1 zero between the filter coefficients. In our im-
plementation, this means that registers d0, d2, d4, and d6 are
used for filtering. Figure 8 illustrates the FIR filter configu-
ration during the calculation of the wavelet coefficients from
the third decomposition level. During this period, the d0, d4,
d8, and d12 registers are involved in the filtering process.
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We implement the inverse wavelet transform accordingly.
The processing is mirrored when compared to the wavelet
decomposition: the vertical filtering is done first and the hor-
izontal processing afterwards. The FIR filter design is the
same as for the direct wavelet transform, only the filter co-
efficients a(0), a(1), a(2), and a(3) in Figure 8 are mirrored.

3.3. The wavelet shrinkage customization

Our video denoising scheme employs a spatially adaptive
wavelet shrinkage approach of [36]. A brief description of
this denoising method follows.

Let yl denote the noise-free wavelet coefficient and wl its
observed noisy version at the spatial position l in a given
wavelet subband. For compactness, we suppressed here the
indices that denote the scale and the orientation. The method
of [36] shrinks each wavelet coefficient by a factor which
equals the probability that this coefficient presents a signal of
interest. The signal of interest is defined as a noise-free signal
component that exceeds in magnitude the standard devia-
tion of noise σ . The probability of the presence of a signal
of interest at position l is estimated based on the coefficient
magnitude |wl| and based on a local spatial activity indicator
zl =

∑
k∈∂l |wk|, where ∂l is the neighborhood of the pixel

l (within a squared window) and Nl is the number of the
neighboring coefficients. For example, for a 3 × 3 window
∂l consists of the 8 nearest neighbors of the pixel l (Nl = 8).

Let H1 denote the hypothesis “the signal of interest is
present:” |yl| > σ and let H0 denote the opposite hypothesis:
“|yl| ≤ σ .” The shrinkage estimator of [9] is

ŷl = P
(
H1 | wl, zl

)
wl = ρξlηl

1 + ρξlηl
wl, (1)

where

ρ = P
(
H1
)

P
(
H0
) , ξl = p

(
wl | H1

)

p
(
wl | H0

) , ηl = p
(
zl | H1

)

p
(
zl | H0

) .

(2)

p(wl | H0) and p(wl | H1) denote the conditional prob-
ability density functions of the noisy coefficients given the
absence and given the presence of a signal of interest. Sim-
ilarly, p(zl | H0) and p(zl | H1) denote the corresponding
conditional probability density functions of the local spa-
tial activity indicator. The input-output characteristic of this
wavelet denoiser is illustrated in Figure 9. This figure shows
that the coefficients that are small in magnitude are strongly
shrinked towards zero, while the largest ones tend to be left
unchanged. The displayed family of the shrinkage character-
istics corresponds to the different values of the local spatial
activity indicator. For the same coefficient magnitude |wl|
the input coefficient will be shrunk less if LSAI zl is bigger
and vice versa.

We now address the implementation of this shrinkage
function. Under the Laplacian prior for noise-free data
p(y) = (λ/2) exp(−λ|y|) we have [9] ρ = exp(−λT)/(1 −
exp(−λT)). The analytical expressions for ξl and ηl seem too
complex for the FPGA implementation. We efficiently imple-
ment the two likelihood ratios ξl and ηl as appropriate look-
up tables, stored in two “read-only” memories (ROM). The
generation of the particular look-up-tables is based on an ex-
tensive experimental study, as we explain later in this section.
The developed architecture is presented in Figure 10. One
ROM memory, containing the look-up table ξl, is addressed
by the coefficient magnitude |wl|, and the other ROM mem-
ory, containing the look-up table ρηl is addressed by LSAI
zl. For calculating LSAI, we average the coefficient values
from the current line and from the previous two lines within
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Figure 8: The proposed FIR filter implementation of the algorithm à trous for a mother wavelet of length 4 and supporting up to 3 de-
composition levels. The particular arithmetic network using the registers d0, d4, d8, and d12 corresponds to the calculation of the wavelet
coefficients at the third decomposition level.

150

100

50

0

�50

�100

�150
�150 �100 �50 0 50 100 150

Noisy input coefficient

Different LSAI

Figure 9: An illustration of the employed wavelet shrinkage family.

a 3 × 3 window. The read values from ROM’s are multi-
plied to produce the generalized likelihood ratio r = ρξlηl.
We found it more efficient to realize the shrinkage factor
r/(1 + r) using another ROM (look-up-table) instead of us-
ing the arithmetic operations. The output of this look-up-
table denoted here as “shrinkage ROM” is the desired wavelet
shrinkage factor. Finally, the output of the shrinkage ROM
multiplies the input coefficient to yield the denoised coeffi-
cient.

We denoise in parallel three wavelet bands LH, HL, and
HH at each scale. Different resolution levels (we use three)
are processed sequentially as illustrated in Figure 2. The low-
pass (LL) band is only delayed for the number of clock peri-
ods that are needed for denoising. This delay, which is in our
implementation 6 clock cycles, ensures the synchronization
of the inputs at the inverse wavelet transform block (see the
timing in Figure 2).

The generation of the appropriate look-up tables for the
two likelihood ratios resulted from our extensive experi-
ments on different test images and different noise-levels as
it is described in [29]. Figure 11 illustrates the likelihood ra-

tio ξl calculated from one test image at different noise lev-
els. These diagrams show another interpretation of the well-
known threshold selection principle in wavelet denoising: a
well-chosen threshold value for the wavelet coefficients in-
creases with the increase of the noise level. The maximum
likelihood estimate of the threshold T (i.e., the value for
which p(T | H0) = p(T | H1)) is the abscissa of the point
ξl = 1. Figure 12 displays the likelihood ratio ξl, in the di-
agonal subband HH at third decomposition level, for 10 dif-
ferent frames with fixed noise standard deviations (σ = 10
and σ = 30). We showed in [29] that from a practical point
of view, the difference between the calculated likelihood ra-
tios for different frames is minor, especially for lower noise
levels (up to σ = 20). Therefore we average the likelihood ra-
tios over different frames and store these values as the corre-
sponding look-up tables for several different noise levels (σ =
5, 10, 15, and 20). In the denoising procedure, the user selects
the input noise level, which enables addressing the correct set
of the look-up tables. The performance loss of the algorithm
due to simplifications with the generated look-up tables is for
different input noise levels shown in Figure 13. These results
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Figure 11: Likelihood ratio ξl for one test frame and 4 different
noise levels (σ = 5, 10, 20, 30).

represent peak signal-to-noise ratio (PSNR) values averaged
over frames of several different video sequences. For σ = 10
the average performance loss was only 0.13 dB (and visually,
the differences are difficult to notice) while for σ = 20 the
performance loss is 0.55 dB and is on most frames becom-
ing visually noticeable, but not highly disturbing. For higher
noise levels, the performance loss increases.

In the current implementation, the user has to select one
of the available noise levels. With such approach, it is possi-
ble that the user will not choose the best possible noise re-
duction. If the selected noise level is smaller from the real
noise level in the input signal, some of the noise will remain
in the output signal. On the other hand, if the noise level is
over-estimated, the output signal will be blurred without sat-
isfying visual effect.

This user intervention can be avoided by implementing a
noise level estimator. The output of this block could be used
for the look-up table selection, which further enables ad-
justable noise reduction according to the noise level in input
signal. For example, a robust wavelet-domain noise estimator
based on the median absolute deviation [37] can be used for
this purpose or other related wavelet-domain noise estima-
tors like [38].

The likelihood ratios ξl and ηl are monotonic increasing
functions. We are currently investigating the approximation

of these functions by a family of piece-wise linear functions
parameterized by the noise standard deviation and by the pa-
rameter of the marginal statistical distribution of the noise-
free coefficients in a given subband.

3.4. Temporal filtering

A pixel-based motion detector with selective recursive tem-
poral filtering is quite simple for hardware implementation.
Since we first apply a high quality spatial filtering the noise is
already significantly suppressed and thus a pixel-based mo-
tion detection is efficient. In case the motion is detected the
recursive filtering is switched off.

Two pixels are involved for temporal filtering at a time:
one pixel from the current field and another from the same
spatial position in the previous field. We store the two fields
in the output buffer and read the both required pixel values
in the same cycle. If the absolute difference between these two
pixel values is smaller than the predefined threshold value,
no motion case is assumed and the two pixel values are sub-
ject to a weighted averaging, with the weighting factors de-
fined in [9]. In the other case, when motion is detected, the
current pixel is passed to the output. The block schematic in
Figure 14 depicts the developed FPGA architecture of the se-
lective recursive temporal filter described above. We use the
8 bit arithmetic because the filter is located in the time do-
main where all the pixels are represented as 8 bit integers.

4. REAL-TIME ENVIRONMENT

In our implementation we use the standard television broad-
casting signal as a source of video signal. A common feature
of all standard TV broadcasting technologies is that the video
sequence is transmitted in analog domain (this excludes the
latest DVB and HDTV transmission standards). Thus, before
digital processing of television video sequence the digitaliza-
tion is needed. Also, after digital processing the sequence has
to be converted back to the analogue domain in order to
be shown on a standard tube display. This pair of A/D and
D/A converters is well known as a codec. The 8 bit codec,
with 256 levels of quantization per pixel, is considered suf-
ficient from the visual quality point of view. Figure 15 shows
a block schematic of digital processing for television broad-
casting systems.

We use the PAL-B broadcasting standard and 8 bit YUV
4 : 2 : 2 codec. The hardware platform set-up consists of
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Figure 12: Likelihood ratio ξl displayed for 10 frames with fixed-noise levels: σ = 10 (a) and σ = 30 (b).
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three separate boards. Each board corresponds to one of the
blocks presented in Figure 15:

(i) Micronas IMAS-VPC 1.1 (A/D—analog front-end)
[39];

(ii) CHIPit Professional Gold Edition (processing block)
[40];

(iii) Micronas IMAS-DDPB 1.0 (D/A—analog back-end)
[41].

We made all the connections among the previously men-
tioned boards with a separate interconnection board designed
for this purpose. This interconnection board consists of the
interconnection channels and the voltage adjustments be-
tween the CHIPit board (3.3 V level) and the Micronas IMAS
boards (5 V level).

The processing board consists of two Xilinx Virtex II
FPGAs (XC2V6000-5) [35] and is equipped with plenty of
SDRAM memory (6 banks with 32 bit access made with
256 Mbit ICs).

All boards of the used hardware platform are configured
with the I2C interface. The user is able to set up the needed

noise level in input signal. This is fulfilled with writing ap-
propriate value to the corresponding register in the FPGA
accessible via the I2C interface. Appropriate look-up table
with the averaged likelihood ratio is selected according to the
value in this register.

5. CONCLUSION

We designed a real-time FPGA implementation of an ad-
vanced wavelet-domain video denoising algorithm. The de-
veloped hardware architecture is based on innovative techni-
cal solutions that allow an implementation of sophisticated
adaptive wavelet denoising in hardware. We believe that the
results reported in this paper can be interesting for a num-
ber of industrial applications, including TV broadcasting
systems. Our current implementation has limitations in
practical use due to the required user-intervention for noise
level estimation. Our future work will integrate the noise
level estimation to avoid these limitations and to allow au-
tomatic adaptation of the denoiser to the noise level changes
in the input signal.
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“Real-time wavelet domain video denoising implemented in
FPGA,” in Wavelet Applications in Industrial Processing II,
vol. 5607 of Proceedings of SPIE, pp. 63–70, Philadelphia, Pa,
USA, October 2004.
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1. INTRODUCTION/MOTIVATION

Pervasive and ubiquitous computing is gaining more and
more in popularity. Boosted by advances in broadband com-
munication and processing systems, computer anytime and
anywhere is slowly but surely becoming a reality. Ubiquitous
and pervasive computing usually involve a set of distributed
sensing and computing nodes geographically located at dif-
ferent sites. Each node collects a given amount of raw data
that is exchanged with other nodes in the system. One of the
main requirements here is that raw data collected by sensors
at a given geographic location by a given system or part of
it should be processed by a corresponding module at that
location. Therefore, the communication between different
nodes is reduced. Only the results of computations at differ-
ent sites—which are mostly sensor data interpretation with
a reduced amount compare to the raw data—have to be sent
to other nodes.

The constraints imposed on pervasive and ubiquitous
computing systems—which are mostly untethered—lead
to a very challenging design process. Large amount of
data must be computed in real time whilst at the same
time maintaining a very low power consumption for the
whole system. Furthermore, the system must be able to
adapt to changing environmental and operational condi-
tions. None of the processors commonly used in embed-
ded systems like DSPs, ASICs or general purpose proces-
sors can provide the features alone (performance, low power,
and adaptivity) that are required in ubiquitous and pervasive
systems.

The last decade has experienced an increasing interest
in deployment of FPGAs in embedded systems. With the
progress in manufacturing technology, FPGAs have become
40 times faster and consume 50 times less power with an in-
crease of 200 fold in their capacity (number of available logic
cells) whilst at the same time becoming 500 times cheaper
in less than 15 years. According to several studies, this trend
is going to be maintained at least in medium term. It is in-
creasingly possible to implement a complete system on-chip
solution using the lowest cost FPGA device. Furthermore, the
partial reconfiguration capability of FPGAs allows for the re-
alization of adaptivity, thus making FPGAs more and more
attractive for pervasive and ubiquitous systems [1].

A main advantage of these programmable logic devices is
the ability to realize parallel processing hardware. Especially
image processing algorithms are inherently parallel and thus
FPGAs can be used to develope highly efficient solutions. In
many systems, for example, in surveillance systems, video
data is captured by modules and sent to other modules for
further processing. The processing task can be, for example,
the detection of movement or the detection and tracking of
suspect objects in a given environment that is monitored by
a camera.

A system on chip is usually made up of a processor con-
nected to a set of peripherals and dedicated hardware mod-
ules via a bus system. The bus system is mastered by the pro-
cessor to access peripherals and collect data to be processed.
In video streaming applications in which large amount of
data must be computed in real time while streaming through
different computational blocks, a traditional system on chip
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in which all the data transfer between different modules is
done on the bus is no longer viable. The exclusive use of the
bus at a given time by one master hinders simultaneous ac-
cess to data by different modules.

In this work, we present a modular implementation of
a feature tracker for video streams in an FPGA. The archi-
tecture is made up of a system on chip in which a processor
and dedicated hardware accelerator modules cohabit. Con-
trary to traditional system on chip, we do not rely only on
a bus for communication. A set of dedicated line and proto-
cols allow for a real-time computation of data while they are
streamed.

The implementation is done on a Xilinx evaluation board
featuring a Spartan 3 FPGA and on a ML310 board with a
Virtex2 Pro.

The remainder of this paper is organized as follows.
Section 2 introduces the feature tracking and presents algo-
rithms used. In Section 3, we present an overview of the re-
lated work. Section 4 presents the design of the feature track-
ing system on an FPGA. There we will discuss the main de-
sign decision. The adaptivity of the system is also discussed
in this section. In Section 5, we present the implementation
results for two platforms. Finally, Section 6 concludes the pa-
per and gives some indication of future work.

2. OBJECT TRACKING IN VIDEO STREAMS

For object tracking purposes often feature trackers are used,
which analyze image sequences and detect motion. For this
purpose small windows, called features, with certain at-
tributes are selected and then attempts are made to find them
in the next frame. Such attributes can, for example, be some
measure of texturedness or cornerness, like a high standard
deviation in the spatial intensity profile, the presence of zero
crossings of the Laplacian of the image, or a simple corner.
Yet, apparently promising features can be useless or even
harmful for tracking, if they do not correspond to a point
in the real world. This happens with hotspots (a reflection of
a highlight on a glossy surface), mirroring, or in the case of
straddling a depth discontinuity. Conversely, useful features
can be lost if they leave the field of vision by obstruction or
by moving out of the image. The well-known KLT-tracker1 is
often used as a base for further development.

The same case is with the following algorithm which is
the approach of Shi and Tomasi [4]. According to them, the
pure translation model is not an adequate model for image
motion when measuring dissimilarity between the features.
They provide experimental evidence for this and introduce
an extended model considering affine image changes.

Image motion can be regarded as a change in image in-
tensity I of a given point (x, y) at time t + τ:

I(x, y, t + τ) = I
(
x − ξ(x, y, t, τ), y − η(x, y, t, τ), t

)
. (1)

1 Kanade, Lucas, and Tomasi [2, 3].

The time-dependent functions ξ and η provide the displace-
ment in x and y directions. So, δ = (ξ,η) defines the amount
of motion and, respectively, the displacement of the point at
x = (x, y). Even within the small windows used for feature
tracking, δ varies and a certain displacement vector does not
exist. A more efficient way is to consider the affine motion
model:

δ = Dx + d, (2)

where

D =
[
dxx dxy
dyx dyy

]

(3)

is a deformation matrix and d is the translation of the feature
window’s center. Applying this to the intensity relation leads
to

J(Ax + d) = I(x), where A = Id + D. (4)

This means that for any two given images I and J six param-
eters must be calculated. The quality of the results depends
on the size of the feature window, the texture of the image
within it, and the amount of motion (camera or object) be-
tween frames. Smaller features result in less reliable values for
D, because only few image changes are considered, but are
generally preferable because they are less likely to straddle a
depth discontinuity.

Because of image noise and because the affine motion
model is not perfect, (4) is in general not satisfyingly exact
enough. To solve this problem the following equation is used
to reduce the minimal error to a sensible value for A and d:

ε =
∫∫

W

[
J(Ax + d)− I(x)

]2
w(x)dx, (5)

where W is the feature window and w(x) a weighting func-
tion, which comes to 1 in the simplest case. Alternatively, a
Gaussian-like function can be used to emphasize the center
area of the window.

The problem can be converted to a linear 6 × 6 system
and D and d can be found with an iterative Newton-Raphson
style minimization (see [5]).

Shi and Tomasi use the pure translation model for track-
ing and affine motion for comparing features between the
first and the current frames in order to monitor quality.

This algorithm has its advantages and drawbacks. First, it
works at subpixel precision. Feature windows in frames will
never be identical because of image noise, intensity changes,
and other interfering factors. Thus translation estimation
cannot be absolutely accurate, the errors accumulate and fea-
ture windows drift from their actual positions. In [6] Zinßer
et al. take care of this problem and also deal with illumina-
tion compensation. Another advantage of their concept is the
detection of distorted and rotated features, which is achieved
by the affine motion model.
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The algorithm excessively uses floating point operations
causing high resource costs. Also, only small translations
can be estimated which requires slow moving objects in the
observed scene or high frame rates of the incoming video
stream, which results in high resource consumption, too. We
want to introduce another procedure for tracking features
which is much more suitable for an implementation on FP-
GAs.

The following algorithm refers to [7]. In contrast to the
KLT-tracker, features (in this case: Harris corners2) are de-
tected in each frame and only comparisons between features
are permitted. For that purpose each position in the current
frame, or to be more precise a feature window with this posi-
tion (feature point) in the middle, is assessed: the derivatives
Ix and Iy are computed by horizontal and vertical filters in the
form

[−1 0 1
]
. Next, the products IxIx, IxIy and IyIy are

separately convolved with the binomial filter
[
1 4 6 4 1

]
,

again horizontally and vertically, to produce the values Gxx,
Gxy , and Gyy . Now determinant d = GxxGyy−Gxy

2, trace t =
Gxx + Gyy , and finally the strength s = d − kt2 with k = 0.06
of the corner response are calculated (see Figure 1(a), white
areas represent high values of s).

To define the actual feature points, nonmax suppression
is used: each pixel for which the corner response is strongest,
considering a 5×5 neighborhood, is declared a feature point.
This method is an alternative to using a global threshold for
the strength of the corner response (see Figure 1(b), where
features are marked).

For matching, each feature is compared with all features
of the next frame which reside within a certain distance of
the original window. To achieve this, normalized correlation
is used. The distance can be adjusted to performance require-
ments. Because Harris corners happen to be in the corner
of their feature window, which impedes correct matching, a
bigger window of 11 × 11 pixels (n = 121) is used instead.
Many comparisons have to be made but fortunately some
values can be precomputed:

A =
∑

I ,

B =
∑

I2,

C = 1√
nB − A2

.

(6)

With the scalar product

D =
∑

I1I2 (7)

of the two features to be compared, the normalized correla-
tion is

ε = (nD − A1A2
)
C1C2. (8)

2 The Harris corner detector computes the locally averaged moment matrix
computed from the image gradients, and then combines the eigenvalues
of the moment matrix to compute a corner strength, of which maximum
values indicate the corner positions.

To decide which matches to accept, a mutual consistency
check is used: all features are compared under several dif-
ferent aspects. For each feature, the preferred counter part,
which produces the highest value of ε, is saved. Finally only
features which mutually fit each other are valid matches.

This algorithm is not equipped with a drift detection. In
addition, because of the irregular input data, as mentioned
above, the features, which are detected for every frame, will
vary and matching is partly impeded. On the other hand,
translations over larger distances can be estimated while only
low frame rates are needed and calculations are simple, com-
pared to the first algorithm which excessively uses floating
point operations. Further, the complete feature detection and
selection process is highly parallelizable and additionally can
be computed using integer operations only. These are very
good preconditions for hardware/software co-design imple-
mentation on an FPGA.

3. RELATED WORK

Feature tracking is usually implemented in the context of au-
tonomous navigation where objects have been detected and
tracked by a given entity. Most of the available systems are
implemented as a pure software solution [4–7]. Usually a
personal computer is mounted on a robot to perform the re-
quired computation. Acceleration of feature tracking on par-
allel computers is considered in [8–10]. The MIMD is con-
sidered in [9] while [10] implements the SIMD paradigm.
The target platform for the MIMD implementation is a Mas-
Par MP-1 with a 128×128 mesh of processing elements while
the SIMD targets the Intel Paragon and the IBM SP2 plat-
forms. The implementation of [8] is used more often for sim-
ulation purposes and is done on an adaptive grid machine
called GrACE.

While such solutions can be useful for experimental pur-
poses and for proof of concept, it is not applicable to real
autonomous systems. Parallel machines, for example, can-
not be used in an embedded environment because the power
consumption of workstations mounted on a robot will allow
the robot only to drive a few meters. Moreover, the size of the
robot must be sufficiently large to carry the PC, thus leading
to a very large system.

Some effort to tackle the aforementioned problem has
been done in [11–13]. In [12] the goal is to have a real-time
implementation of the feature tracking using a hardware
platform. The target system is a C4x board featuring eight
Texas instrument processors C4x running at 50 MHz. Each
processor is assigned a specific task. One processor grabs
the frame, two processors perform feature selection, and one
processor performs motion estimation. Feature tracking is
done by three processors and the rendering is done by one
processor. The system is able to process 0.8 frames per second
for feature detection (100 features) and 4 frames per second
for feature tracking, leading to an overall performance of 0.8
frames per second. Although the size of this system as well
as its power consumption remains low compared to a soft-
ware solution, it is still far from being suitable to be used in a
mobile system.
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(a) (b)

Figure 1: Feature detection and selection.

Some recent works [11, 13] have targeted FPGAs for an
efficient implementation of feature tracking. In [11] features
are selected in an FPGA mounted on a PCI-Board, which is
embedded in a workstation. Not only cannot this solution
be used in small mobile environments, it also presents the
drawback that the processor, a 3 GHz Pentium, must be used
all the time for data transfer between the FPGA and the pro-
cessor.

The system in [13] is a more compact hardware/software
system. The software part is implemented on a PowerPC pro-
cessor that is attached to an FPGA in which the hardware
part is implemented. The FPGA is in charge of the image en-
hancement that is done using a high pass filtering process.
The implementation uses a sliding window that is used to
capture the neighborhood of an incoming pixel. The latter is
then used to compute the enhanced value of the pixel that is
stored in a memory shared by the PowerPC and the FPGA.
The adaptive process is done via the modification of the filter
parameters as well as the threshold parameter for the number
of features to be selected. Because the single available mem-
ory can be accessed only by one module (processor or FPGA)
at a time, the streaming computation process will be delayed
leading to a decrease in the number of frames that may be
processed in a second. The FPGA is used in this system as an
ASIC, since no reconfiguration is done. Because the struc-
ture of filters varies according to the algorithms used, a sim-
ple change in the filter coefficient is not sufficient to replace a
filter in the FPGA. The Sobel operator, for example, is two di-
mensional while the Laplace is only one dimensional. There-
fore, a Laplace filter cannot become a Sobel just by replacing
the coefficients. The configuration of the FPGA can be used
to replace the complete filter structure.

This work presents a better use of a single chip to imple-
ment an embedded adaptive hardware/software solution to

feature tracking. The system is optimized to perform com-
putations on all the streamed frames without delay. We also
exploit the possibilities to dynamically extend the instruction
set of the embedded processor by binding an accelerator di-
rectly to the processor. Adaptivity is done by means of con-
figuration rather than by parameter modifications as is the
case in [13].

4. DESIGN OF A HARDWARE/SOFTWARE
SOLUTION FOR FPGA

This section describes our implementation of the chosen fea-
ture tracking algorithm. The data flow from the incoming
images to the positions of image movements looks like this:
video in → feature detection → feature selection → feature
tracking→ further processing.

The feature detection is highly parallelizable and can be
implemented completely in hardware (see Figure 2). A com-
pilation of five convolve filters (for Ix, Iy , Gxx, Gxy , and Gyy)
and simple arithmetic operations is used. Usually convolving
is realized using a sliding window, whose size can be 3 × 3,
5 × 5, and so on. In case of a 3 × 3 window, incoming pixel
data must fill up two line buffers before the first calculation is
possible. The latency results in 2 lines + 2 pixels + 1 clock cy-
cles. The corner strength can be computed by add, subtract,
and multiply units. Down shifting provisional results prevent
arithmetical overflows. The factor k = 0.06 in s = d − kt2

can be approximated by shifting by 4 (=̂ k = 0.0625). The
FPGA used is equipped with single clock cycle multipliers.
Thus, the corner strength calculation needs only three fur-
ther clock cycles to be completely computed while using only
integer numbers.

For feature selection nonmax suppression is used, which
is realized by a sliding window, too. Each value within the
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Figure 2: Logic for feature detection.

window is compared with the center value. If it is the maxi-
mum the window position is declared a feature point.

For a system on-chip layout, these preliminary ideas al-
low a hardware/software partitioning as shown in Figure
3(a). The feature detection and selection is completely im-
plemented in a dedicated hardware module (FT) and feature
tracking is done in software by the Xilinx MicroBlaze pro-
cessor. The video frames are captured by the videoin module
and stored in the SRAM. The RS232 module is used for de-
bugging purposes.

Considering the data transfer, there is communication
between video input module and feature module, between
feature module and memory in order to access the current
frame and store the selected features, and between processor
and memory in order to continue with tracking these fea-
tures. All transactions simultaneously utilize the bus, which
is in general only designed for low peripheral load. The
amount of data produced by video streams is very high and
clutters up the bus. That means that this solution is not fit to
process data in real time.

4.1. Efficient hardware/software partitioning

By rearranging the components while accounting for the
data flow, performance can be improved. Our architecture
is shown in Figure 3(b). The videoin module sends image se-
quences to the feature module, which stores image data and
selected features in the memory. A dual ported memory is
used that can be accessed from two different clients and clock
domains. The feature module is, furthermore, connected to
the bus to exchange information with the processor. This in-
formation consists of controlling instructions like “start” and
“stop,” but also of parameters like the base address of image
data in the memory or parameters which influence the pro-
cessing. The BlockRAM is the main memory of the proces-
sor and holds data like variables and heap of the application
running on it. A certain area of the memory is reserved for
image and feature data by the application. To notify the fea-
ture module about the location of this area the base address
is transmitted by the processor to the module over the bus.

4.2. Dynamic reconfiguration increases flexibility

The Xilinx FPGAs allow partial reconfiguration of each in-
dividual column. The Erlangen slot machine (ESM) [14] is
an architecture that exploits this feature. Its new concept al-
lows an unrestricted relocation of modules on the device.
The FPGA is logically divided into slots which can be repro-
grammed independently. Via a programmable crossbar each
module can, regardless of placement, communicate with its
peripherals and also with other modules. Memory banks are
vertically attached to each slot, providing enough memory
space to store temporary data. In streaming applications, this
memory can also be used for shared memory communi-
cation between neighboring modules. Smaller data chunks
can be transferred either by placing (dual ported) Block-
RAM between them or via a reconfigurable multiple bus
(RMB).

Figure 4 shows the possible placement of our feature
tracker on the ESM platform. The data flow was already de-
scribed above. Using multiple memory banks, a technique
called double buffering can further increase performance:
image frames are filled alternately into two banks by the
videoin module. The feature module reads out data but al-
ways from the respectively other bank. Hence, in contrast to
a single memory architecture, no bottleneck will occur while
accessing the memory.

Reconfiguration highly increases flexibility of the feature
tracker. This means that, for example, the source of incom-
ing image stream can simply be an analog video input as well
as a firewire or LAN connection. By reconfiguration the in-
put module can be replaced by an appropriate one. Image
prefiltering, like illumination compensation or the Gaussian
function to smooth image noise, increases the quality of the
tracking results. In addition, feature detection and selection
processes can be altered or exchanged to adapt to the sys-
tem environment. The tracker unit can use dedicated helper
hardware, fore example, to speed up the comparison of fea-
tures (see next subsection). In contrast to works like [13] we
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Figure 4: Mapping of the feature tracker on the column-based re-
configarable device.

rely on reconfiguration rather than on just exchanging mod-
ule parameters to increase flexibility.

4.3. Instruction set metamorphosis

By analyzing the remaining part of the algorithm, namely,
feature tracking, which is done in software, some more im-
provements are possible. The features of the MicroBlaze pro-
cessor can be upgraded. Eight fast communication chan-
nels, called fast simplex links (FSL), are available to connect
dedicated hardware accelerators, which are linked through
FIFO buffers. The instruction set offers special put and gets

Put

FIFO

MicroBlaze

FIFO

Get

Custom HW
accelerator

Figure 5: Instruction set extension through fast simplex link.

commands to access these pipelines by software (shown in
Figure 5).

The tracking code reads each image point from the mem-
ory to calculate the parameters for the normalized correla-
tion (8). A software implementation only allows a sequen-
tial computation of each individual pixel. We take advantage
of the FSL and the dedicated hardware attached to it to in-
crease the throughput as well as the speed of feature compar-
ison. Since one pixel is represented by 8 bits and the FSL and
memory bus width are both 32 bits, we are able to transfer
and process four pixels at once. The hardware accelerator si-
multaneously calculates the sum A and the sum of squares B
while the processor only pushs data into the FIFO. A similar
procedure is used to compute scalar products D while feature
comparison phase.

5. RESULTS

Our design was implemented on a Spartan 3 (xc3s400)
FPGA. This FPGA is to small to host all hardware acceler-
ators together with the microBlaze processor. Thus our first
implementation is a software only version which runs com-
pletely on the microBlaze.
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Table 1: Performance of software only solution.

Spartan 3 board ML310 board (Virtex2 Pro)

Feature detection 5.01 s 153 ms

Feature selection (30 features) 0.89 s 78 ms

Tracking 1.6 s 28 ms

Table 2: Pipeline stages for hardware feature detection and selection and their latencies. Examples with different image formats and system
clocks.

Stage Logic Purpose Latency

1 3× 3 convolve Ix and Iy 2l + 2 + 1

2 3 multipliers I∗ products 1

3 1× 5 convolve Binomial horiz. 4 + 1

4 5× 1 convolve Binomial vert. 4l + 1 + 1

5 Arithmetic d, t, s 3

6 5× 5 convolve Feature selection 4l + 4 + 1

Total 10l + 19

QCIF (176× 144 pixels), 50 MHz 35.58 μs

QCIF (176× 144 pixels), 100 MHz 17.79 μs

VGA (640× 480 pixels), 100 MHz 64.19 μs

MicroBlaze

I/D LMB

SRAM

OPB

Debug

FIFO
(mb to filter)

FT

VGA

FIFO
(filter to mb)

Figure 6: Floorplan of the feature tracker on a Xilinx Spartan 3
FPGA.

Figure 6 shows the placement of the modules in the floor-
planner tool. The resulting design in its placed and routed
form can be seen in Figure 7.

Considering the timings of a software only solution
(which takes no advantage of hardware accelerators) feature
detection takes 5.01 s executed on the introduced design. The
latency for feature selection is proportional to the amount
of features found, for example, the latency for 80 features
is 2.39 s. As we will see in the following this is much slower
than the hardware solution. The tracking part takes 1.6 s per
frame.

Porting to a Xilinx ML310 board equipped with a Vir-
tex2 Pro FPGA and using a newer version of the development

MicroBlaze

I/D LMB

SRAM

OPB

Debug

FIFO
(mb to filter)

FT

VGA

FIFO
(filter to mb)

Figure 7: Placed and routed design of the feature tracker.

tools further increased the performance and allowed timings
in the range of milliseconds (see Table 1).

Table 2 summarizes the pipeline stages of the hardware
feature detection and selection module (independent from
the complete design) and their latencies. The underlying al-
gorithm was already described in Section 2 so only some re-
marks follow: Stage 2 computes the values IxIx, IxIy , and IyIy
and stage 3 and 4 produce the values Gxx, Gxy , and Gyy .
Stage 5 uses arithmetic units to calculate the corner response
strength s. Finally stage 6 selects features using a modified
convolve filter. The total latency results in 10l + 19 clock cy-
cles, where l is the image width. The table also shows exam-
ples for different image formats and system clocks.
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Because this design processes one pixel per clock, very
high frame rates are achieved. The frame rate can be cal-
culated as system clock divided by image size, for example,
1972 fps for a QCIF format or 162 fps for a VGA (640 × 480
pixels) resolution. Of course the tracking part that runs in
software on the MicroBlaze cannot achieve this high perfor-
mance and thus is the bottleneck in this case. The tracking
delay of 28 ms allows about 3-4 frames per second with a
video stream in QCIF format.

6. CONCLUSIONS

In this paper, we have designed and implemented an effi-
cient and flexible feature tracker on a reconfigurable device.
The efficiency is obtained by using a viable hardware/soft-
ware partitioning, by communication between modules, as
well as by using an efficient memory access. Furthermore,
the exploitation of the MicroBlaze features, like the fast sim-
plex link, improves the performance further. Contrary to
other works that modify the parameters of some filter to in-
crease flexibility, we use reconfiguration to exchange hard-
ware modules with different structures. The progress made
in the last decade have affected the power consumption and
the size of FPGAs, their costs have dropped rapidly while
their capacity continues to increase. This trend is expected to
continue, allowing the use of FPGAs in mobile autonomous
environments. Our future work is to further improve the
tracking part of our solution and the deployment in a system
of cooperative intelligent robots using FPGAs as computing
platform.
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1. INTRODUCTION

Many of today’s state-of-the-art software systems rely on the
use of hidden Markov model (HMM) evaluations to calcu-
late the probability that a particular audio sample is represen-
tative of a particular sound within a particular word [1, 2].
Such systems have been observed to achieve accuracy rates
upwards of 95% on dictionaries greater than 1000 words;
however, this accuracy comes at the expense of needing to
evaluate hundreds of thousands of Gaussian probabilities re-
sulting in execution times of up to ten times the real-time
requirement [3]. While these systems are able to provide a
great deal of assistance in data transcription and other of-
fline collection tasks, they do not prove themselves as ef-
fective in tasks requiring real-time recognition of conversa-
tional speech. These issues combined with the desire to im-
plement speech recognition on small, portable devices have
created a strong market for hardware-based solutions to this
problem. Figure 1 gives a conceptual overview of the speech
recognition process using HMMs. Words are broken down
into their phonetic components called phonemes. Each of
the grey ovals represents one phoneme, which is calculated
through the evaluation of a single three state HMM. The
HMM represents the likelihood that a given sequence of in-
puts, senones, is being traversed at any point in time. Each

senone in an HMM represents a subphonetic sound unit,
defined by the particular speech corpus of interest. These
senones are generally composed of a collection of multi-
variant Gaussian distributions found through extensive of-
fline training on a known test set. In essence, each HMM
operates as a three-state finite-state machine that has fixed
probabilities associated with the arcs and a dynamic “current
state” probability associated with each of the states, while
each word in the dictionary represents a particular branch
of a large, predefined tree style search space.

The set of senones used during the recognition process is
commonly referred to as the acoustic model and is calculated
using a set of “features” derived from the audio input. For
our research we chose to use the RM1 speech corpus which
contains 1000 words, and uses an acoustic model comprised
of 2000 senones [4]. The RM1 corpus represents the most
common words used in “command-and-control” type tasks
and can be applied to a large number of tasks from naviga-
tion assistance to inventory ordering systems. This particular
dictionary also represents a medium-sized task (100–10 000
words) and presents a reasonable memory requirement for
a system looking to be implemented as a single-chip solu-
tion. This corpus requires that every 10 milliseconds, 300 000
operations must be performed to determine the probability
that a particular feature set belongs to a given multivariant
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Figure 1: Conceptual overview of speech recognition using hidden Markov models.

Gaussian distribution, resulting in over 60 million calcula-
tions per second, just to calculate the senones.

1.1. Background

Although several years of research has gone into the devel-
opment of speech recognition, the progress has been rather
slow. This is a result of several limiting factors, amongst
which recognition accuracy is the most important. The abil-
ity of machines to mimic the human auditory perceptory or-
gans and the decoding process taking place in the brain has
been a challenge, especially when it comes to the recognition
of natural, irregular speech [5].

To date, however, state-of-the-art recognition systems
overcome some of these issues for systems with regular
speech structures, such as command- and control-based ap-
plications. These systems provide accuracies in excess of 90%
for speaker independent systems with medium sized dictio-
naries [6]. Despite the satisfactory accuracy rate achieved for
such applications, speech recognition has yet to penetrate
our day-to-day lives in a meaningful way.

The majority of this problem stems from the computa-
tionally intensive nature of the speech recognition process,
which generally requires several million floating-point op-
erations per second. Unfortunately using general purpose
processors (GPPs) with traditional architectures is inefficient
due to limited numbers of arithmetic logic units (ALUs) and
insufficient caching resources. Cache sizes in most processors
available today, especially those catering towards embedded
applications, are very limited: only on the order of tens of
kBs [7]. Therefore, accessing tens of MBs of speech data us-
ing tens of kBs of on-chip cache results in a high cache miss
rate thereby leading to pipeline stalls and significant reduc-
tion in performance.

Further, since several peripherals and applications run-
ning on a device need access to a common processor, bus-
based communication is required. Thus, all elements con-
nected to the bus are synchronized by making use of bus
transaction protocols thereby incurring several cycles of ad-
ditional overhead. Because of these inefficiencies, speech
recognition systems execute less than one instruction per cy-
cle (IPC) [1, 2] on GPPs. As a result, the process of rec-
ognizing speech by such machines is slower than real time
[3].

To counter these effects, implementers have two options.
They could either use processors with higher clock-rates to
account for processor idle time caused by pipeline stalls and
bus arbitration overheads, or they could redesign the proces-
sor that caters to the specific requirements of the application.
Since software-based systems are dependent on the under-
lying processor architecture, they tend to take the first ap-
proach. This results in the need for devices with multi-GHz
processors [1, 2] or the need to reduce the model complex-
ity. However, machines with multi-GHz processors are not
always practical, especially in embedded applications. The al-
ternative is to reduce bit-precision or use a more coarse-grain
speech model to decrease the data size. While this helps in
making the system practically deployable, the loss in com-
putational precision in most cases, leads to degraded perfor-
mance (in terms of accuracy) and decreases the robustness
of the system. For example, a speaker-independent system
becomes a speaker-dependent system or continuous speech
recognition moves to discrete speech recognition.

The second option involves designing a dedicated archi-
tecture that optimizes the available resources required for
processing speech and allows for the creation of dedicated
data-paths that eliminate significant bus transaction over-
head.
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Projects at the University of California at Berkeley,
Carnegie Mellon University, and the University of Birming-
ham in the United Kingdom have made some progress with
hardware-based speech recognition devices in recent years
[8, 9]. These previous attempts either had to sacrifice model
complexity for the sake of memory requirements or simply
encountered the limit of the amount of logic able to be placed
on a single chip. For example, the solution in [8] is to cre-
ate a hardware coprocessor to accelerate a portion of speech
recognition, beam search. The solution in [9] requires de-
vice training. In contrast, our work presents a novel architec-
ture capable of solving the entire speech recognition prob-
lem in a single device with a model that does not require
training through the use of task specific pipelines connected
via shared, multiport memories. Thus, our implementation
is capable of processing a 1000 word command and control-
based application in real time with a clock speed of approxi-
mately 100 MHz.

The remainder of this paper describes the speech sili-
con project, providing an in-depth analysis of each of the
pipelines derived for the system-on-a-chip (SoC). Specifi-
cally, we introduce a novel architecture that enables real-time
speech recognition on an FPGA utilizing the 90 nm ASIC
multiply-accumulate and block RAM features of the Xilinx
Virtex 4 series devices. Final conclusions as well as a sum-
mary of synthesis and post place-and-route results will be
given at the end of the paper.

2. THE SPEECH SILICON PROJECT

The hardware speech processing architecture is based on the
SPHINX 3 speech recognition engine from Carnegie Mellon
University [10]. Through analysis of this algorithm, a model
of the system was created in MATLAB. As a result, complex
statistical analysis could be performed to find which portions
of the code could be optimized. Further, the data was able to
be rearranged into large vectors and matrices leading to the
ability to parallelize calculations observed to be independent
of one another. Preliminary work on this topic has been dis-
cussed in [11, 12].

The majority of automatic speech recognition engines on
the market today consist of four major components: the fea-
ture extractor (FE), the acoustic modeler (AM), the phoneme
evaluator (PE), and the word modeler (WM), each present-
ing its own unique challenge. Figure 2 shows a block diagram
for the interaction between the components in a traditional
software system, with inputs from a DSP being shown on the
left of the diagram.

The FE transforms the incoming speech into its fre-
quency components via the fast fourier transform, and sub-
sequently generates mel-scaled Cepstral coefficients through
mel-frequency warping and the discrete cosine transform.
These operations can be performed on most currently avail-
able DSP devices with very high precision and speed and
will therefore not be considered for optimization within the
scope of this paper.

The AM is responsible for evaluating the inputs received
from the DSP unit with respect to a database of known

Main program
controller

Acoustic
modeler

Phoneme
evaluator

Word
modeler

Feature
extractor Central data cache

Figure 2: Block diagram of software-based automatic speech recog-
nition system.

Gaussian probabilities. It produces a normalized set of scores,
or senones, that represent the individual sound units in the
database. These sound units represent subphonetic compo-
nents of speech and are traditionally used to model the be-
ginning, middle, and end of a particular phonetic unit. Each
of the senones in a database is comprised of a mixture of mul-
tivariant Gaussian probability distribution functions (PDFs)
each requiring a large number of complex operations. It has
been shown that this phase of the speech recognition process
is the most computationally intensive, requiring up to 95% of
the execution time [2, 13], and therefore requires a pipeline
with very high bandwidth to accommodate the calculations.

The PE associates groups of senones into HMMs repre-
senting the phonetic units, phonemes, allowable in the sys-
tems dictionary. The basic calculations necessary to process
a single HMM are not extremely complex and can be bro-
ken down into a simple ADD-COMPARE-ADD pipeline, de-
scribed in detail in Section 4. The difficulty in this phase is
in managing the data effectively so as to minimize unneces-
sary calculations. When the system is operational not all of
the phonemes in the dictionary are active all the time, and it
is the PE that is responsible for the management of the ac-
tive/inactive lists for each frame. By creating a pipeline ded-
icated to calculating HMMs and combining it with a second
piece of logic that acts as a pruner for the active list, a two step
approach was conceived for implementing the PE, allowing
for maximal efficiency.

The WM uses a tree-based structure to string phonemes
together into words based on the sequences defined in the
system dictionary. This block serves as the linker between the
phonemes in a word as well as the words in a phrase. When
the transition from one word to another is detected, a vari-
able penalty is applied to the exiting word’s score depending
on what word it attempts to enter next. In this way, basic syn-
tax rules can be implemented in addition to pruning based
on a predefined threshold for all words. WM is also respon-
sible for resetting tokens found inactive by the PE. The prun-
ing stage of the PE passes two lists to the WM, one for active
tokens and the other for newly inactive tokens. Much like the
PE, the WM takes a two stage approach, first resetting the in-
active tokens and then processing the active tokens. By doing
the operations in this order we ensure that while processing
the active tokens, all possible successor tokens are available if
and when they are needed.
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When considering such systems for implementation on
embedded platforms the specific constraints imposed by
each of the components must be considered. Additionally,
the data-dependencies between all components must be con-
sidered to ensure that each component has the data it re-
quires as soon as it needs it. To complicate matters, the over-
all size of the design and its power consumption must also
be factored into the design if the resultant technology is to
be applicable to small, hand-held devices. The most effec-
tive manner for accommodating these constraints was de-
termined to be the derivation of three separate cells, one for
each of the major components considered, with shared mem-
ories creating interface between cells. To minimize the con-
trol logic and communication between cells, a token-passing
scheme was implemented using FIFOs to buffer the active to-
kens across cell boundaries. A block diagram of the compo-
nent interaction within the system is shown in Figure 3.

By constructing the system in this fashion and keeping
the databases necessary for the recognition separate from the
core components, this system is not bound to a single dic-
tionary with a specific set of senones and phonemes. These
databases can in fact be reprogrammed with multiple dictio-
naries in multiple languages, and then given to the system for

use with no required changes to the architecture. This flexi-
bility also allows for the use of different model complexity in
any of the components, allowing for a wide range of input
models to be used, and further aiding in the customizabil-
ity of the system. Figure 4 shows a detailed diagram of the
high-level architecture of the speech recognition engine.

2.1. Preliminary analysis

During the conceptual phase of the project, one major re-
quirement was set: the system must be able to process all
data in real time. It was observed that speech recognition
for a 64 000 word task was 1.8 times slower than real time
on a 1.7 GHz AMD Athalon processor [14]. Additionally, the
models for such a task are 3 times larger than the models
used for the 1000-word command and control task on which
our project is focused. Therefore, extending this linearly in
terms of the number of compute cycles required, it can be
said that a 1000-word task would take 1.6 times real time, or
160% longer than real time, to process at 1.7 GHz. Thus, a
multi-GHz processor cannot handle a 1000-word task in real
time, and custom hardware must be considered to help ex-
pedite the process. This certainly eliminates real-time speech
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Table 1: Number of compute cycles for three different speech cor-
puses.

Speech
corpus

No. of
words

No. of
gaussians

No. of evaluations
per frame

TI digits 12 4816 192 600

RM1 1000 15 480 619 200

HUB-4 64 000 49 152 1 966 080

Table 2: Timing requirements for frame evaluation.

AM PE WM Total

No. of cyles
603 720 8192 102 400 714 312

[per 10 ms frame]

Memory bandwidth
495 — 5 —

[MB/sec]

processing from mobile phones and PDAs due to the far
more limited capabilities of embedded processors.

In modern speech processing, incoming speech is sam-
pled every 10 milliseconds. By assuming a frame latency of
one for DSP processing, it can be said that a real-time hard-
ware implementation must execute all operations within
10 milliseconds. To find our total budget a series of exper-
iments were conducted on open-source SPHINX models
[15, 16] to observe the cycle counts for different recognition
tasks. Table 1 summarizes the results of these tests for three
different sized tasks: digit recognition [TI Digits], command
and control [RM1], and continuous speech [HUB-4].

The table shows the number of “compute cycles” re-
quired for the computation of all Gaussians for different tasks
assuming a fully pipelined design. It can be seen that as-
suming one-cycle latency for memory accesses, the RM1 task
would require 620 000 compute cycles, while HUB4 would
require 2 million cycles. Knowing that we need to process all
of the data within a 10- milliseconds window we observe that
the minimum operating speeds for systems performing these
tasks would be 62 MHz and 200 MHz, respectively.

Since the computation of Gaussian probabilities in AM
constitutes the majority of the processing time, keeping some
cushion for computations in the PHN and WRD blocks, it
was determined that 1 million cycles would be sufficient to
process data for every frame for RM1 task. Therefore a min-
imum operating speed of 100 MHz was set for our design.
Having set the target frequency, a detailed analysis of the
number of compute cycles was performed and is summarized
in Table 2.

The number of cycles presented in this table is based
on the assumption that all computations are completely
pipelined. While a completely pipelined design is possible in
the case of AM and PHN, computations in the WRD block
do not share such luxury. This is a direct result of the variable
branching characteristic of the word tree structure. Hence, to
account for the loss in parallelism, the computation latency

(estimated at a worst case of 10 cycles) has been accounted
into the projected cycles required by the WRD block.

Further, the number of cycles required by the PE and
WM blocks is completely dependent on the number of
phones/words active at any given instant. Therefore, an anal-
ysis of the software was performed to obtain the maximum
number of phones active at any given time instant. It was
observed from SPHINX 3.3 for an RM1 dictionary, a max-
imum of 4000 phones were simultaneously active. Based on
this analysis a worst case estimate of the number of cycles re-
quired for the computation is presented in the table.

3. ACOUSTIC MODELER

Acoustic modeling is the process of relating the data re-
ceived from the FE, traditionally Cepstral coefficients and
their derivatives, to statistical models found in the system
database, which can account for 70% to 95% of the compu-
tational effort in modern HMM-based ASR systems [2, 13].
Each of the i senones, in the database are made up of c com-
ponents, each one representing a d-dimensional multivari-
ant Gaussian probability distribution. The components of a
senone are log-added [17] to one another to obtain the prob-
ability of having observed the given senone. The equations
necessary to derive a single senone score are shown in (1)–
(6).

P(X) = 1√
(2π)D

∣∣V∗∣∣e
−∑D

d=1 ((Xd−μd)2/2∗σ2
d ) (1)

ln
(
P(X)

) = −0.5 ln
[
(2π)D

∣∣V∗∣∣]−
D∑

d=1

(
Xd − μd

)2

2∗ σ2
d

. (2)

Consider the first term on the left-hand side of (2). If the
variance matrix V is constant, then the V∗ term will also
be constant, making the entire term a predefined constant
K . Additionally, the denominator of the second term can be
factored out and replaced with a new variable Ωd that can
be used to create a simplified version of the term Dist(X).
Dist(X) becomes solely dependent on the d-dimensional in-
put vector X . These simplifications are summarized in the
three axioms below with a simplified version of (2) given as
(3)

let: K = −0.5 ln
⌊
(2π)D

∣∣V∗∣∣⌋,

let: Dist(X) =
D∑

d=1

(
Xd − μd

)2

2∗ σ2
d

=
D∑

d=1

(
Xd − μd

)2 ∗Ωd,

let: Ωd =
(

0.5
σ2
d

)
,

ln
(
P(X)

) = K −Dist(X).

(3)

Equation (3) serves to represent the calculations necessary
to find a single multidimensional Gaussian distribution, or
component. From here we must combine multiple compo-
nents with an associated weighting factor to create senones
as summarized in (4):

Si(X) =
C∑

c=1

[
Wi,c ∗ Pi,c(X)

]
. (4)
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Figure 5: Block diagram of acoustic modeling pipeline.

At this point in our models it is necessary to define a log-base
conversion factor, ψ, in order to stay in line with the SPHINX
models used as our baseline. The use of a conversion factor
in these equations is useful in transforming the Pi,c(X) term
of (4) into the required ln(Pi,c(X)) term required for inser-
tion of (3), but the use of the specific value is unique to the
SPHINX system. By moving into the log-domain, the mul-
tiplication of (4) can also be transformed into an addition
helping to further simplify the equations. The following ax-
ioms define the conversion factor with the result of its inser-
tion shown in (5)–(6):

let: ψ = 1.0003,

let: f = 1
ln(ψ)

,

f ∗ ln
[
Si(X)

] = logψ
[
Si(X)

]
,

logψ
[
Si(X)

] = log
C∑

c=1

[
logψ

(
Wi,c

)
+ logψ

(
Pi,c(X)

)]
,

let: W ′
i,c = logψ

(
Wi,c

)
,

(5)

logψ
[
Si(X)

] = log
C∑

c=1

[
W ′

i,c + logψ
(
Pi,c(X)

)]
. (6)

The values μ, σ , V , K , and W relate to specific speech cor-
pus being used and represent the mean, standard deviation,
covariance matrix, scaling constant, and mixture weight, re-
spectively. These values are stored in ROMs that are other-
wise unassociated with the system and can be replaced or re-
programmed if a new speech corpus is desired. The f & Ψ
values are log-base conversion factors ported directly out of
the SPHINX 3 algorithm and the X vector contains the Cep-
stral coefficient input values provided by the FE block.

For our system we chose to use the 1000-word RM1
dictionary provided by the Linguistic Data Consortium
[16], which utilizes 1935 senones, requiring over 2.5 mil-
lion floating-point operations to calculate scores for every

senone. For any practical system these calculations become
the critical path and need to be done as efficiently as possi-
ble. By performing an in-depth analysis of these calculations,
it was found that the computationally intensive floating-
point Gaussian probability calculations could be replaced
with fixed-point calculations while only introducing errors
on the order of 10−4. The ability to use fixed-point instead
of floating-piont calculations allowed for the implementa-
tion of a pipelined acoustic modeling core running at over
100 MHz post place-and-route on a Virtex-4 SX35-10. Fig-
ure 5 illustrates the main components of the AM pipe.

Each of the stages in the pipeline sends a “go” signal to the
following stage along with any data to be processed, allow-
ing for the system to be stalled anywhere in the pipe without
breaking. The first three stages also receive data from a status
bus regarding the particular nature of the calculation being
performed (i.e., is this the first, middle, or last element of a
summation), which removes the need for any local FSM to
control the pipeline.

3.1. Gaussian distance pipe

The Gaussian distance pipe is the heart of AM block and
is responsible for calculating (1)–(3) for each senone in the
database. This pipe must execute (1) over 620 000 times for
each new frame of data and therefore must have the high-
est throughput of any component in the system. To accom-
modate this requirement while still trying to minimize the
resources consumed by pipeline, the inputs to crucial arith-
metic operations are multiplexed, allowing the inputs to the
operation to be selected based on the bits of the status bus.
The bits of the status bus, the calc-bits, provide information
as to which element of the summation is being processed so
that the output of the given stage can be routed properly to
the next stage. Figure 6 shows a data-flow graph (DFG) for
the order of operations inside the Gaussian distance pipe.

In order to help with low-power applications, the Gaus-
sian distance pipe has a “pipe freeze” feature included, which
is not shown in the DFG. If the last bit of the calculation
is seen at the end of the pipe before a new first bit to be
calculated has arrived, the pipe will completely shut down
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Figure 6: Data-flow graph for Gaussian distance pipe.

and wait for the presence of a new data. Internal to the pipe,
each stage passes a valid bit to the successive stage that serves
as a local stall, which will freeze the pipe until the values of
the predecessor stage have become valid again.

Examining (2)–(4) reveals that to calculate a single com-
ponent based on a d-dimensional Gaussian PDF actually re-
quires d + 1 cycles, since the result of the summation across
the d-dimensions must be subtracted from a constant and

then scaled. As shown in Figure 6, the data necessary for the
subtraction and scaling (K & W) can be interleaved into the
data for the means and variances (M & V), leading to the
need to read d+ 1 values from the ROM for each component
in the system. This creates a constraint for feeding data into
the pipe such that once the d+1 values have been read in, the
system must wait for 1 clock cycle before feeding the data for
the next component of the pipe. This necessity comes from
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the need to wait for the output of the final addition shown at
the bottom of Figure 6. At the beginning of clock cycle d + 1,
the K & W values are input into the pipe, but these values
cannot be used until the summation of DIST (X) is com-
plete. This does not occur until clock cycle d + 2, resulting
in the need to hold the input values to the pipe for one extra
cycle.

Figure 6 further indicates that it takes seven clock cycles
to traverse from one end of the pipe to the next. However,
the next stage of the design, the log-add lookup table (LUT),
described in Section 3.2, takes ten cycles to traverse. There-
fore we must add three extra cycles to the Gaussian distance
pipe to keep both stages in sync. To ensure that the additional
cycles are not detrimental to the system, a series of exper-
iments were conducted examining the effects of additional
pipeline stages on the achieved fmax of the system. The results
of these experiments, as well as the synthesis and post place-
and-route results for this block are summarized in Section 4.

3.2. Log-add lookup

After completing the scoring for one component, that com-
ponent is sent to the log-add LUT for evaluation of (4)–(6).
This block is responsible for accumulating the partial senone
scores and outputting them when the summation is com-
plete. Equations (7)–(10) show the calculations necessary to
perform the log-add of two components P1,1 and P1,2,

D = ∣∣P1,1 − P1,2
∣∣, (7)

R = P1,1 −→ if : P1,1 > P1,2, (8)

else: R = P1,2,

let: Ψ = 1.0003,

let: f = 1
log(ψ)

,

(9)

RES = R + 0.5 + f ∗
(

log
(
1 + ψ−D

))
. (10)

Due to the complexity of (10), it has been replaced by a LUT,
where D serves as the address into the table. By using this
table, (10) can be simplified to the result seen in (11),

RES = R + LUT(D). (11)

While the use of a lookup to perform the bulk of the com-
putation is a more efficient means of obtaining the desired
result, it creates the need for a table with greater than 20 000
entries. In an effort to maximize the speed of the LUT, it was
divided into smaller blocks and the process was pipelined
over 2 clock cycles. The address is demultiplexed in the first
cycle and the data is fetched and multiplexed onto the output
bus during the second.

Equations (7)-(8) illustrate the operations necessary to
find the address to this LUT. We chose to implement these
operations as a three stage pipeline. The first stage of opera-
tion performs a subtraction of the two raw inputs and strips
the sign bit from the output. In the second cycle the sign bit
is used as a select signal to a series of multiplexers that assign
the larger of the two inputs to the first input of the subtrac-
tion and the smaller to the second input of the summation.

The third cycle of the pipe registers the larger value for use
after the lookup and simultaneously subtracts the two values
to obtain the address for the table. Similarly to the Gaussian
distance pipe, the log-add LUT also has a pipe-freeze func-
tion built in. Figure 7 shows a detailed data-flow graph of the
operations being performed inside the log-add lookup.

As mentioned in Section 3.1, the entire log-add calcula-
tion takes a minimum of 10 clock cycles to process a single
input and return the partial summation for use by the next
input. When this block is combined with the Gaussian dis-
tance pipe to form the main pipeline structure for the AM
block the result is a 20 stage pipeline capable of operating at
over 140 MHz, and requiring no local FSM for managing the
traffic through the pipe, or possible stalls within the pipe.

3.3. Find Max/normalizer

Once a senone has been calculated, it must first pass through
the find Max block before being written to the senone RAM.
This block is a 2-cycle pipeline that compares the incom-
ing data to the current best score and overwrites the current
best when the incoming data is larger. Once the larger of the
two values has been determined, the raw senone is output to
the senone RAM. This is accompanied by a registered write
signal ordinarily supplied by the log-add LUT. A data-flow
graph for the find Max block is shown in Figure 8.

As mentioned in Section 3.2, the find Max unit only
needs to operate once every 10 cycles, or whenever a new
senone is available, therefore the values being fed to the com-
pare are only updated when the senone valid bit is high. Aside
from this local stall, the find Max unit has a similar pipe
freeze function to conserve power.

When the last raw senone is put into the senone RAM,
the “MAX done” signal in Figure 8 will be set high, signaling
to the normalizer block that it can begin. During the process
of normalization the raw senones are read sequentially out of
the senone RAM and subtracted from the value seen at the
“Best Score” output of the find Max block. The normalizer
block consists of a simple 4-stage pipeline that first registers
the input, then reads from the RAM, performs the normal-
ization, and finally writes the value back to the RAM. The
normalizer block also has pipe-freeze and local stall capabil-
ities.

3.4. Composite senone calculation

In the RM1 speech corpus there are two different types of
senones. The first type is “normal” or “base” senones, which
are calculated via the processes described in Sections 3–3.3.
The second type is a subset of the normal senones called
composite senones. Composite senones are used to represent
more difficult or easily confusable sounds, as well as nonver-
bal anomalies such as silence or coughing. Each composite
senone is pointer to a group of normal senones, and for a
given frame the composite senone takes the value of the best
scoring normal senone in its group.

In terms of computation this equates to the evaluation
of a series of short linked lists, where the elements of the list
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Figure 7: Data-flow graph for log-add LUT.

must be compared to find the greatest value. Once this great-
est value is found it is written to a unique location in the
senone RAM at some address above the address of the last
normal senone. By writing this entry into its own location
in the senone RAM instead of creating a pointer to its origi-
nal location, the phoneme evaluation block is able to treat all
senones equally, thus simplifying the control for that portion
of the design.

The composite calculation works through the use of two
separate internal ROMs to store the information needed for

processing the linked-lists. The first ROM (COUNT ROM)
contains the same number of entries as the number of com-
posite senones in the system, and holds information about
the number of elements in each composite’s linked list. When
a count is obtained from this ROM, it is added to a base ad-
dress and used to address a second ROM (ADDR ROM) that
contains the specific address in the senone RAM, where the
normal senone resides.

Once the normal senone has been obtained from the
senone RAM, it is passed through a short pipeline similar to
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the find MAX block except that only the best score is written
back to the senone RAM. The count is then decremented and
the process repeated until the count equals zero. At this point
the next element of the count ROM is read and the process is
repeated for the next composite senone. Once all elements of
the count ROM have been read and processed, the block will
assert a done signal indicating that all the senone scores for a
given frame have been calculated. A DFG for the composite
senone calculation is shown in Figure 9.

Like the other blocks of the AM calculation, the com-
posite senone calculation has the built-in ability for locally
stalling during execution and freezing completely when no
new data is present at the input. This feature is more signifi-
cant because composite senone calculations can only be per-
formed after all of the normal senones have been completely
processed. This results in a significant portion of the run-
time where this block can be completely shut down leading
to notable power savings. Specifically, it takes approximately
650 000 clock cycles to calculate all of the normal senones,
during which the composite senone calculation block is ac-
tive for only 2200 cycles.

In order to minimize the data access latency of later stages
in the design, the senone RAM is replicated three times.
When processing AM, the address and data lines of each of
the RAMs are tied together so that one write command from
the pipeline will place the output value in each of the RAMs
during the same clock cycle. When the control of these RAMs
is traded off to the phoneme evaluator (PE), the address lines
are decoupled and driven independently by the three senone
ID outputs from the PE. While this design choice does cre-
ate a nominal area increase, the 3x improvement in latency is
critical for achieving real-time performance.

4. PHONEME EVALUATOR

During phoneme evaluation, the senone scores calculated
in the AM are used as state probabilities within a set of
HMMs. Each HMM in the database represents one context-
dependent phone or phoneme. In most English speech cor-
puses, a set of 40–50 base phones is used to represent the
phonetic units of speech. These base phones are then used to
create context-dependent phones called mono-, bi-, or tri-
phones based on the number of neighbors that have influ-
ence on the original base phone. In order to stay close to the
SPHINX 3 system, we chose to use a triphone set from the
RM1 speech corpus represented by 3-state Bakis-topology
HMMs. Figure 10 shows an example Bakis HMM with all
states and transitions labeled for later discussion.

The state shown at the end of the HMM represents a null
state called the exit state. While this exit state has no proba-
bility associated with it, it does have a probability for entering
it. It is this probability that defines the cost of transitioning
from one HMM to another. One of the main advantages of
HMMs for speech recognition is the ability to model time-
varying phenomena. Since each state has a self transition as
well as a forward transition, it is possible to remain inside an
HMM for a very large amount of time or conversely, to exit
an HMM in as little as four cycles, visiting each state only
once. To illustrate this principle, Figure 11 maps a hypothet-
ical path through an HMM on a two-dimensional trellis.

By orienting the HMM along the Y-axis and placing time
on the X-axis, Figure 11 shows all possible paths through an
HMM with the hypothetical best path shown as the dark-
ened line through the trellis. In our HMM decoder we chose
to use the Viterbi algorithm to help minimize the amount of
data needed to be recorded during calculation. The Viterbi
algorithm states that if, at any point in the trellis, two paths
converge, only the best path need be kept and the other dis-
carded. This optimization also is widely used in speech recog-
nition systems, including SPHINX 3 [18].

For each new set of senones, all possible states of an active
HMM must be evaluated to determine the actual probability
of the HMM for the given inputs. The operations necessary
to calculate these values are described in (12)–(15),

H3(t � 1) + T22

H2(t � 1)T12
> + S2(t) = H3(t),

H2(t � 1) + T11

H1(t � 1) + T01
> + S1(t) = H2(t),

(12)

H1(t � 1) + T00

H0
> + S0(t) = H1(t),

(13)

HBEST(t) = MAX
{

H1(t), H2(t), H3(t)
}

(14)

HEXIT(t) = H2 + T2e. (15)

Equations (12)-(13) show that the probability of an HMM
being in a given state at a particular time is dependent not
only on that state’s previous score and associated transi-
tion penalties, but also on the current score of its associ-
ated senone. This relationship helps to enhance the accuracy
of the model when detecting time-varying input patterns.
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Looking specifically at (13) it can be seen that the H0 input
is not time-dependent. While H0 is not completely constant,
it does not change with every new time tick, and therefore is
not considered strictly time-dependent. The specific reasons
for this functionality relate to the way HMMs are activated
and deactivated in the system and are described in more de-
tail in Section 5. However, it should be noted that this value

only changes on the transition from inactive to active. Equa-
tions (12)-(13) show the insertion of the Viterbi algorithm
in that only the best of the possible transitions will be held in
the value use in the next time.

It is also relevant to note that, while we may have a very
large number of bi- or tri-phones in the database, we only
have as many unique sets of transition matrices as we have
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base phones. When a new HMM is to be processed, its ID
is put into a decoder that outputs the ID of the transition
matrix to be used for the evaluation. This transition score ID,
or TMAT ID, is then used to address the ROMs that contain
the actual scores associated with the arcs of Figure 10. For
each evaluation of an HMM the best of all state scores as well
as the HMM exit score must be calculated to facilitate the
pruning of the HMM in the next stage of the PE.

Once the HBEST and HEXIT values have been found for all
the active HMMs, a beam pruning algorithm is applied to the
set to help mitigate the amount of active data in the system.
During this process a constant offset or beam is added to the
best HBEST and HEXIT values. Only values with scores above
this beam remain active for the next stage. As the HMMs are
being pruned, a token with the HMMs unique ID is written
to a status FIFO based on the result of pruning. During the
word modeling portion of the SR process, these FIFOs will
be read and the data in the shared RAM will be processed
accordingly.

When implementing the PE in hardware, the majority of
the logic necessary resides in the large amount of constant
data that must be stored and retrieved in order to process
an HMM. Figure 12 illustrates the data structure that must
be traversed to acquire all of the necessary data to process a
single HMM.

In the structure shown in Figure 12 the HMM ID in-
put is used to address 4 separate LUTs, one for the transition
score ROMs, and one for each of the senones needed for the
HMM. As mentioned previously, the TMAT ID ROM serves
as a decoder to map one of a large set of HMM IDs to one
of the relatively small set of TMAT IDs. This single TMAT
ID is then used to address six TMAT score ROMs in parallel
in order to decrease the latency of the data access. The other
three LUTs receive the same HMM ID, but are used to decode
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Figure 12: Data hierarchy for HMM calculation.

the appropriate senone IDs needed for the HMM. Again in
an effort to increase parallelism and decrease latency, these
senone IDs are found in parallel and output from the block
back to the shared senone RAM described in Section 3. Once
the TMAT scores, current senone scores, and previous state
scores have been retrieved, the actual processing of the HMM
begins. As previously stated, the remainder of the calculation
can be implemented as a high throughput pipeline and is de-
scribed in detail in the following sections.

4.1. HMM control logic

While developing our architecture, it was necessary to con-
sider the fact that unlike AM, the amount of work that needs
to be done at any one time is variable and therefore some
control must be included to monitor the amount of active
data in the system. As illustrated in Figures 3 and 4 the data
to be processed by the PE is most efficiently managed by a se-
ries of FIFOs containing lists of active HMM IDs. Specifically,
data entering PE is provided via either the new phoneme ac-
tive list (nPAL) FIFO, and data exiting PE is written to ei-
ther the exit (VALID) FIFO, the inactive (DEAD) FIFO, or
the phoneme active list (PAL) FIFO. Figure 13 illustrates the
relationships between these FIFOs.

The first observation made when looking at Figure 13 is
that the PAL FIFO is actually completely internal to the PE
block and can be loaded by either the HMM pipeline or the
pruner. In order for this to work properly a special end of
phase (EOP) token was created to serve as a place marker
in the FIFO. To create the EOP token the PAL FIFO was de-
signed to be 1 bit wider than the other FIFOs so that the extra
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bit could be used to hold information about the EOP token.
All standard tokens in the queue are appended with a “0” for
this extra bit, while the EOP token is appended with a “1,”
making it very easy to detect the presence of the EOP token.
At the beginning of each new frame PE will start pulling to-
kens from the nPAL FIFO until the FIFO is completely empty.
When the FIFO is emptied, or in the case there was nothing
there to start, the PAL FIFO is then read until and EOP to-
ken is detected by the STATUS block. When the EOP token
is seen it is then known that all HMMs requiring processing
have been completed and pruning may commence.

At the beginning of pruning the EOP token is written
back to the PAL FIFO. Pruning continues until the EOP token
is popped back out of the FIFO. Upon this second observa-
tion, all data has been processed for that frame and the word
modeler may begin processing the tokens in the DEAD and
EXIT FIFOs.

4.2. HMM pipeline

The execution of (12)–(15) constitutes the majority of the
calculations necessary to perform phoneme evaluation and

therefore a significant amount of time was put into examin-
ing the optimal way to perform these operations. After estab-
lishing the control for this pipeline the calculations were ex-
amined and it was found that to find all H values for a given
HMM a simple ADD-COMPARE-ADD-COMPARE pipeline
can be constructed as shown in the DFG in Figure 14.

The DFG in Figure 14 highlights the regularity of the
structure for the pipeline and leads directly to a high-
throughput low-latency design for calculation of the HMM
scores in the system. Further, the complexity of the pipeline is
actually quite small and requires a noticeably smaller amount
of logic than even the ROMs required to drive it. As each
of the active HMMs are evaluated, the five output values are
written to a shared RAM called the phone-pointer RAM (PH
RAM) and the HMM ID token is written into the pruner
queue. Results on synthesis for this block are summarized in
Section 6 of this document.

4.3. HMM pruner

After having calculated all HMM scores for a given frame the
scores are then read back out of the RAM and compared to
the beams. In our system we use two different beams to prune
the HMMs based on both their exiting score and their best
score. If an HMM has a valid exit score it will be passed to
the word modeler as well as remain in the active queue. If
the HMM score is not above the exit beam, it will be checked
against a second beam to see if the HMM should remain in
the active queue. This two-step approach helps to minimize
the number of HMMs mistakenly pruned from the system
and significantly increases the recognition accuracy of the
system. It also helps to maintain a time-varying system, in
that an HMM can exit and remain active so that in successive
frames the HMM could exit again, but with a higher proba-
bility.

A third beam is also calculated by the pruner and is
passed forward to the word modeler for later use. This beam
is calculated based off of the exit score for any active HMM
in the cue that represents the end of a word in a dictio-
nary. Just as transitioning from one HMM to another incurs
a penalty so does transitioning from one word to another,
and the word beam helps to prune out unlikely sequences of
words. While the HMM pruner does not actually process the
data in the PH RAM based on the result of pruning, it does
establish the work order for the word modeler and helps to
greatly simplify that stage of processing.

5. WORD MODELER

Word modeling can be broken down into two major steps:
resetting of newly inactive tokens and updating of currently
active tokens. Given that the functionality of these two com-
ponents is distinctly different, two separate components were
designed, one for each task. The token deactivator reads data
from the DEAD FIFO and resets the scores in the PH RAM.
Simultaneously, the token activator reads from the EXIT
FIFO and processes the word tree to determine which new
tokens need to be placed in the nPAL FIFO. The creation of
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Figure 14: Data-flow graph for HMM pipeline.

two separate blocks also minimizes the amount of logic ac-
tive at any one point in time leading to power savings crucial
to ensuring sustainability on a mobile platform. The opera-
tions of these blocks are described in detail in Sections 5.1
and 5.2, respectively.

5.1. Token deactivator

After the PE block has pruned the active HMMs and placed
the appropriate tokens in the DEAD FIFO the word mod-
eler can begin the task of resetting the PH RAM entries cor-
responding to these tokens. This process is simplified by the
fact that all PH RAM values need to be reset to the exact same
value. This means that to deactivate a token the token must
be popped from the DEAD FIFO and used to address the PH
RAM. When this address is applied to the RAM the reset con-
stant is then written to the RAM and the process is repeated
until the FIFO is empty. This process can be performed in
a simple-two stage, POP-WRITE pipeline, and is capable of
running at close to the fMAX of the target device.

5.2. Token activator

The token activator portion of the word modeler is notice-
ably more complicated than deactivator portion. When an
HMM is found to have a valid exit score, the word modeler
must determine the location of that HMM in the word tree

and which HMMs are tied to its exit state. As shown in Fig-
ure 1, a word tree can have a large number of branches stem-
ming from one root. Mapping these types of structures into
hardware is not obvious. Another unique problem in token
activation is that while a given HMM may be used multi-
ple times in multiple different word trees such as the “CH”
sound at the end of pouch and couch, these two sounds must
be represented by completely unique events. This means that
while a given dictionary may not need all possible phonemes
in a language, it will most likely need multiple instances of
some of the phones.

Thus, it was necessary to determine a way of indexing
specific nodes in the search space such that their informa-
tion could remain in a unique location in the PH RAM. To
do this, the entire word search space was mapped and each of
the nodes was given a unique ID. An example of this process
is shown in Figure 15.

Based on this mapping scheme, even though nodes 12–
14 in Figure 15 all relate to the AE phoneme, they all have
unique IDs and will be treated separately in search algorithm.
The mappings determined in the process relate directly to the
HMM IDs stored in the tokens passed between the PE and
WM blocks, and define the core of the token passing algo-
rithm as implemented in our system.

Having established our mapping scheme it was necessary
to implement a tree structure in hardware. Unlike the previ-
ous section of the design, this portion is less arithmetically
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intensive and involves searching instead of computational
overheads. One of our immediate observations when looking
at the data structures was that each node in the search space
can be thought of as a short linked list. Evaluating linked lists
in hardware is a well-defined process, so to create our tree we
created a linked list of linked lists.

During each evaluation a token must be read from the
EXIT FIFO and its linked list retrieved. Further the HEXIT

score from the exiting HMM must be added to a word
penalty and propagated to the H0 score of the HMMs in the

linked list. Since the word penalty will be different for each
HMM in the linked list, it becomes necessary to process the
HMMs one at a time until the end of the list is reached. To
efficiently keep track of the linked list, two ROMs were des-
ignated: the START ROM and the NEXT ROM. The START
ROM is directly addressed by the token in the EXIT FIFO
and contains both a starting address in the NEXT ROM for
the linked list and a count of how many values are in the list.
The NEXT ROM holds all of the HMM IDs necessary to pro-
cess the linked lists. Figure 16 shows the DFG for the token
activator.

When a token is read from the EXIT FIFO a multiplex
control bit is reset to determine which token is in control of
the PH RAM address. While the count for the linked list is
nonzero, the bit will remain set but once the final decrement
has been completed the bit control bit will switch to allow a
new exiting HMM to be read from the PH RAM. This process
is repeated for each element in the EXIT FIFO until the FIFO
is emptied at which time the system goes idle and awaits the
next frame of input data.

6. SYNTHESIS AND PLACE-AND-ROUTE

While performing the synthesis and place-and-route opera-
tions on our hardware architecture implemented in VHDL,
two distinctly different approaches were taken in an effort to
observe the effect of design tools on overall system design.
The extremely computationally heavy AM block was written
using VDHL syntax specific to the Synplify synthesis engine
in an effort to focus the bulk of the work load on the tools
as opposed to the designers. This approach allows for the
generation greatly simplified VHDL which in turn makes the
processes of debugging and optimization significantly easier.
Additionally, the Synplify synthesis tool provides built-in fea-
tures to perform pipelining and retiming of the target VHDL.

As a second design strategy we implemented the PE and
the WM blocks in traditional VHDL and synthesized using
precision synthesis from Mentor Graphics. Precision synthe-
sis tends to leave more optimizations up to the designers, and
knowing that the implementation of the PE and the WM are
significantly more intuitive than the implementation for AM,
we chose to leave the bulk of the design optimization to our-
selves. To compare the overall quality of the design as well as
the time for development, limited portions of PE were also
written for Synplify so a one to one comparison of results
could be obtained.

6.1. Acoustic modeling results

To examine the effects of pipelining and retiming in Syn-
plify, a series of experiments was conducted on the Gaus-
sian distance pipe to find the optimal number of pipeline
stages. To do this, extra registers were put into the design and
the pipelining and retiming options were enabled in the syn-
thesis tool. When the synthesis was executed, the tool was
able to move these registers to what it determined were the
optimal locations in the design, minimizing the amount of
analysis done by the designer. Our primary target in these
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Figure 17: Analysis of fmax versus pipeline stages of the gaussian
distance pipe for virtex-4 SX and spartan-3 FPGAs.

experiments was the Xilinx Virtex-4 SX35 FPGA due to
its high performance and large number of embedded DSP
(DSP48) and RAM (BRAM) cells. For sake of comparison we
also targeted a smaller device, the Xilinx Spartan-3, a 90 nm
FPGA with embedded 18× 18 multipliers. The graph in Fig-
ure 17 shows the results of these experiments for a pipeline
between 7 and 19 stages deep, with the dotted lines repre-
senting the projected fmax of the system from the synthesis
engine and the solid lines representing the post place-and-
route fmax.

While the fmax obtained for the Virtex-4 device is notice-
ably higher than the fmax of the Spartan-3 devices, it is also
observed that increasing the number of pipeline stages im-
proves the speed of the Spartan-3 device more significantly
than the speed of the Virtex-4 device. It is also observed that
for both devices there are an optimum number of stages be-
yond which the performance of the device actually degrades
due to the increased amount of area consumed by the design.

Another interesting result of these experiments was that
regardless of the number of pipeline stages the projected syn-
thesis speed for the Virtex-4 did not change. This implies
that even when the pipeline is configured with the minimum
number of allowable stages, the results of the pipelining and
retiming processes are the same. The post place-and-route
timing results for the Virtex-4, however, do change with the
number of pipeline stages implemented. Since we know we
are utilizing the embedded DSP slices on the chip and we can
trace the critical path of the circuit we can conclude that the
physical distance between two individual DSP cells is great
enough that adding extra registers along the path will in fact
increase the speed of the design. Figure 16 further shows that
when targeting the Virtex-4, a 10-stage pipe will provide an
acceptable operating frequency for the system with only mi-
nor improvements being gained with each additional pipe
stage beyond 10. This is a promising result because we know

Table 3: Summary of synthesis and place-and-route results for
Virtex-4 SX35.

Component
Synthesis PAR

Area
(MHz) (MHz)

Gaussian
dist. pipe

157 145
6 DSP48s

423 slices

Log-add LUT 164 150
13 BRAMs

307 slices

Find max 181 160 90 slices

Normalizer 197 172 155 slices

Composite
senone calc.

197 140
2 BRAMs

147 slices

AM block
(total)

164 125
6 DSP48s, 30 BRAMs

1527 slices

FPGA logic
slices

FIFOs &
RAM blocks

DSP tiles

Senone RAM

Log-add LUT

Composite calc.

Normalizer

Gaussian distance pipe

Find Max

Control & I/O

Figure 18: Floor plan for AM pipeline.

that the depth of the Log-Add LUT is 10 cycles as well, al-
lowing us to match the depths of the two pipelines without
having to sacrifice a considerable amount of speed.

In addition to the experiment described above all indi-
vidual components of the AM block were synthesized and
routed on the chip to fully characterize their performance.
Table 3 summarizes the results of these tests and makes note
of any special cells used by each stage of the design. Figure 18
shows the FPGA layout for the AM block.
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Table 4: Power analysis for multiple target FPGA devices.

Power (mW)
Virtex II Pro Virtex 4 Spartan 3

XC2VP100 XCE4VSX35 XC3S1500

Dynamic 163.46 35.46 41.75

Static 571.88 395.50 178.00

Total 735.34 430.97 219.76

Table 5: Summary of post-place-and-route results for the phoneme
evaluator.

Component
fMAX Slices Flip-flops LUTs MISC

(MHz)

HMM
189 1475 2393 593 24 BRAMs

pipeline

Pruner 115 48 24 77 —

PE core 115 1713 2645 861 24 BRAMs

PE control 213 8 14 13 —

PE block
117 1941 2983 1050 25 BRAMs

(total)

Further, since AM consumes over 90% of the run-time, it
was relevant to analyze the power consumption of this block
to get a feel for the overall consumption of the device. To
do this, post-place-and-route simulations were performed in
ModelSim using data generated in Xilinx Xpower and the re-
sults of our experiments are shown in Table 4 for Virtex-4,
Virtex-2pro, and Spartan-3 devices all running at fmax for the
specific device. The stimulus for these experiments was based
on randomly generated inputs to the system.

6.2. Phoneme evaluator results

Given that the design for the PE was noticeably less complex
than the design for the AM, we chose to implement all op-
timizations by hand and derive our own custom models for
all necessary components as opposed to allowing the tools to
do this. We used FPGAdvantage GUI to derive the code and
precision synthesis to do our placement analysis. Our post-
place-and-route results are summarized in Table 5.

6.3. Word modeler results

Observing that word modeling took less than 5% of the over-
all execution effort, little time was spent analyzing the syn-
thesis results for this block. As with the PE block we opted
for custom derivation of VHDL and synthesis via precision
synthesis. The results of the place-and-route operations are
summarized in Table 6.

Table 6: Summary of the word modeler synthesis results.

Component
fMAX Slices Flip- flops LUTs MISC

(MHz)

Token
319 51 48 88 —

deactivate

Token
145 174 66 320 2 BRAMs

activate

WM block
142 357 131 638 2 BRAMs

(total)

6.4. Hardware development summary

The hardware development presented in this work presents
a novel processing architecture capable of executing the
CSR algorithm at over 100 MHz. As discussed in Section 3,
100 MHz has been determined to be the minimum operat-
ing speed for a device to process speech in real time. This
requirement comes from the known input frame rate of
10 milliseconds and the proposed maximum cycle count of
one million. Preliminary results on the entire operational
system have shown a device running at 105 MHz on a Virtex-
4 SX35 ff668-10 and requiring less than 800 000 cycles to
complete all necessary operations. These results clearly show
a system able to run at sufficient speeds for real-time speech
recognition as well as maintain an average of 20% down-time
during which the engine is inactive.

Aside from being able to recognize human speech in real
time, special attention was paid to ensure that the through-
put of the design was maximized via the creation of custom
pipelines for each stage of the algorithm. The first major por-
tion of the algorithm, acoustic modeling, has been shown to
be the most computational intensive part of the problem and
significant effort was taken to design this block as efficiently
as possible. The result is a custom hardware pipeline capable
of operating at 125 MHz post-place-and-route on a Virtex-
4 SX35. This pipeline is completely data-driven and involves
no internal state machines to guide the process. By giving the
design this flexibility the complexity of the inputs can be var-
ied without needing to reconfigure the design.

During the design of the phoneme evaluation stage the
large data access problem encountered was effectively re-
duced through the use of multiple small parallel ROMs and
pointer arrays. When processing an HMM a large amount
of data must first be retrieved to perform the calculations.
While the need for moving such large quantities of data
within the design adversely effects the performance of the
pipeline, speeds of 111 MHz after post-place-and-route are
still possible, with the core of the processing unit able to op-
erate as fast as 140 MHz post-place-and-route.

During the final portion of the design, word modeling, a
tree-search algorithm was designed in hardware. The hard-
ware was designed as a large linked list evaluation unit ca-
pable of propagating information throughout the tree while
also deactivating nodes in the tree and connecting multiple
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Table 7: Summary of hardware performance results.

Component fMAX synthesis/PAR (MHz) Area Cycle count

Gaussian distance pipeline 157/145
6 DSP tiles,

10 cycle/Gauss
411 slices

Log-add lookup 164/150
13 BRAMs,

10 cycle/comp
307 slices

AM block total 164/125
6 DSP tiles, 162 cycle/senone

30 BRAMS, 1328 slices 640 K cycle total

Hidden Markov model pipeline 261/140 775 slices 8 cycle/load 5 cycle/calc

Pruner 277/177 112 slices 4 cycle/HMM

PE block total 115/111
84 BRAMs,

22 cycle/HMM
1866 slices

Token deactivator 377/170 54 Slices 2 cycle/dead HMM

Token activator 184/120
3 BRAMs, 10∗branch

160 slices cycle/active HMM

WM block total 166/129
3 BRAMs,

22 cycle/dead

414 slices
HMM + 10∗branch

cycle/active HMM

trees for the creation of word strings. The deactivation por-
tion of the hardware is capable of running at 170 MHz post-
place-and-route but the activation logic can only operate at
120 MHz, limiting the overall performance of the word mod-
eler but not impacting the overall performance of the system.

The majority of the verification for the design was done
through post-place-and-route simulations models and com-
paring their results to the results obtained in the MATLAB
environment for the SPHINX 3 models. Knowing that our
MATLAB model provided a one-to-one representation of the
SPHINX system, we were confident that if the MATLAB re-
sults were identical to the hardware results, we had correctly
implemented the algorithms. Table 7 summarizes the perfor-
mance results for the major portions of the hardware devel-
opment.

7. CONCLUSIONS

In this work we have shown the ability to implement high-
performance acoustic modeling pipeline on an FPGA device.
Further we designed a unique architecture for a design ca-
pable of performing critical operations in the speech recog-
nition process in real time with minimized power consump-
tion and maximum processing bandwidth. Our system also
highlights an architecture built to be driven completely by the
data leading to a system that can be reprogrammed for mul-
tiple applications and dictionaries by altering the input to the
system. This research has proven the effectiveness of the pro-
posed design methodology and helped further the develop-
ment of portable low-power speech recognition systems.
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1. INTRODUCTION

FPGAs (field programmable gate arrays) are ideal in many
embedded systems applications because they have several de-
sirable attributes: small size, low-power consumption, a large
number of I/O ports, and a large number of computational
logic blocks. As they have grown in size and functionality,
there has been increasing interest in using them as imple-
mentation platforms for image processing applications, par-
ticularly real-time video processing [1]. Images have a high
degree of spatial parallelism, and thus image processing ap-
plications are ideally suited to implementation on FPGAs,
which contain large arrays of parallel logic and registers and
can support pipelined algorithms.

However, there is a significant cost in obtaining the in-
creased performance of FPGAs because their architecture dif-
fers significantly from the fixed architecture of standard pro-
cessors. As Offen [2] has stated, the classical serial architec-
ture is so central to modern computing that the architecture-
algorithm duality is firmly skewed towards this type of ar-
chitecture. Consequently, most image processing practition-
ers are not familiar with parallel programming issues such as
concurrency, pipelining, priming, and bandwidth issues.

Programming FPGAs differs significantly from writing
software for conventional single-processor, large-memory
systems in another respect. With FPGA-based designs one
designs not only the algorithm, but also the architecture on
which it is implemented. FPGA-based designs generally com-
prise a large number of simple processors which all work in
parallel and may compete for memory access or other re-

sources. In designing an appropriate algorithm for the FPGA
it is therefore necessary to take into account the limited band-
width, particularly when accessing memory.

The three main processing models used for image pro-
cessing algorithms on FPGAs—stream, offline, and hybrid
processing—have differing characteristics.

In stream processing, data is presented as a one-dimensi-
onal pixel stream by means of a suitable access pattern [3],
typically raster order (in which pixels are presented left to
right for each image row beginning with the top row). This
converts the spatial distribution to a temporal stream and is
often used for processing video data in real time as the data is
streamed through the system. This type of processing is well
suited to stand-alone configurations—for example, a system
in which an FPGA fed directly by a continuous stream of data
from a video source is acting as the “front end” of a smart
camera, processing the image from a sensor before storing
the result into memory.

The strict time constraints involved with stream process-
ing depend on the video capture rate and image size (e.g.,
each of the 25 frames that PAL produces per second contains
a 768 by 576 colour image). Stream processing constrains the
design into performing all of the required calculations for
each pixel at the pixel clock rate. If this is not possible, then
some pixels in the stream will be missed and so will not be
processed.

In some nontrivial applications, such as lens distortion
correction [4, 5] or object tracking [6, 7] it is difficult to
achieve these high data rates, because each pixel requires
complex calculations that may easily exceed a single clock
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cycle. In such situations it is common to break the calculation
down into several phases, and to implement the hardware al-
gorithm as a pipeline, with one clock cycle allocated to each
stage. At any instant, successive stages of the pipeline will
contain pixels at successive stages of processing. The over-
all rate of output will be one pixel per clock cycle, but there
may be a latency of several clock cycles between inputting a
raw pixel and outputting the processed result. Pipelining is
an important technique for exploiting the temporal paral-
lelism inherent in stream data.

In stream processing, memory bandwidth constraints
dictate that as much processing as possible is performed on
the data as it arrives. For some operations, the order in which
pixels are required for processing does not directly corre-
spond to their arrival order from the raster, so the image
must be partly or wholly buffered. However, memory is lim-
ited on an FPGA, and applications that require full-frame
buffering, such as image warping, must typically use off-
chip memory, which introduces additional latency. In appli-
cations where multiple accesses are required such as bilin-
ear interpolation [8], the limited bandwidth and serial access
make it difficult to retrieve desired pixel values.

Offline processing is commonly used in hosted system
configurations. In such a configuration, the FPGA is a co-
processor in the embedded system, whose role is to comple-
ment the host computer by accelerating certain tasks. In this
mode, there is no longer the strict timing constraint on the
processing; random access to shared memory is possible and
desired pixel values can be obtained over a number of clock
cycles. This allows the bandwidth constraints to be relaxed at
the expense of processing time.

Hybrid processing combines stream and offline process-
ing. For example, stream processing can be used for image
capture and display while offline processing can be used to
provide random access to a region of interest in the captured
image.

VERTIPH is a visual programming language that has
been designed to capture algorithms for real-time video pro-
cessing on FPGAs. This application area has a number of spe-
cialised requirements, and VERTIPH provides three views of
a design. Each view is tailored to the characteristics of a par-
ticular level of abstraction. Before describing these views in
detail, we shall characterise some existing languages designed
for capturing image processing applications.

2. PRESENT LANGUAGES

Schematic entry is too low-level as a design tool for im-
age processing as it does not capture the algorithmic na-
ture of image processing functions adequately. HDLs (hard-
ware description languages) were developed to allow design-
ers to capture the high-level temporal behaviour of complex
digital designs as well as their circuit structure. Verilog [9]
and VHDL [10] are industry standard HDLs. Such languages
can be thought of as the assemblers of hardware program-
ming providing great flexibility from gate level up to the be-
havioural level. As most of them offer similar functionality,
we will concentrate on two, VHDL and JHDL. The low-level

constructs supported by VHDL make it a poor choice for im-
plementing complex image processing algorithms. As a gen-
eral purpose language, VHDL offers no specific support for
image processing operations. While HDLs offer a great deal
of flexibility in terms of the control logic it is up to the de-
signer to construct any state machines required to control
the system. This can be advantageous, thus allowing very ef-
ficient control over the execution path. However this burdens
the designer with designing both algorithm and the control
logic.

JHDL [11–13] is a structural HDL developed specifically
for custom computing machine design on FPGA devices.
This has led to a language which is more intuitive and easy
to learn than existing FPGA design tools. JHDL incorporates
the ability to design a circuit and simulate this circuit in an
integrated package. This includes visualisation tools for the
design including: schematics, waveform diagrams, memory
views, and hierarchical design viewers. The biggest advantage
of JHDL over other low-level HDLs is the integration of the
development and debug environments.

The power and flexibility of HDLs imposes an exact-
ing low-level programming style that can obscure the broad
sweep of a high-level algorithm. There have been a number
of approaches to producing high-level design tools that cir-
cumvent this problem.

One is to modify an existing software programming lan-
guage to add in the constructs required for building hard-
ware. In most conventional programming languages, state-
ments are executed sequentially following the order of as-
signment statements, and branches are specified by flow-of-
control (while-, if -, etc.) statements. In general, conventional
programming languages do not offer the ability to run pro-
cesses in parallel, although some support process threads.
The lengths of data types are defined by either the fixed archi-
tecture of the processor (ANSI-C) or by the language (Java).
These languages are not designed to be compiled into hard-
ware, so they lack hardware-oriented constructs such as ways
to define communication between different processes, to cre-
ate RAMs, and to assign I/O pins.

There are five main areas in which conventional pro-
gramming languages need to be extended in order to support
hardware design. It should be possible

(i) to build architectural components such as RAMs,
ROMs, WOMs, channels,

(ii) to specify that operations occur concurrently and to
specify the timing or clock speed of processes,

(iii) to define communication between processes running
at different speeds,

(iv) to create low-level structures such as wires along with
bit-level operations such as bit concatenation,

(v) to define data types in terms of their bit length.

Handel-C compiles algorithms written in a high-level C-
like language directly into gate-level netlists. It is based on a
subset of ANSI-C with hardware-oriented syntax extensions
such as variable data widths, parallel processing, and channel
communication between parallel processing blocks. The lan-
guage is designed to allow software engineers to express an
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Figure 1: Logical flow of instructions.

algorithm without requiring any knowledge of the underly-
ing hardware [14]. Apart from the introduction of architec-
tural constructs and bit-level operations, the only significant
difference between ANSI-C and Handel-C is the introduc-
tion of the par construct. All statements within a par block
run in parallel.

Handel-C provides a good level of abstraction from hard-
ware design. However, its textual nature makes the data flow
in a parallel design difficult to understand. Figure 1 shows
that there is almost no visual difference between sequential
and parallel codes. This is common to all text-based HDLs.

The increased ability to concentrate on algorithm devel-
opment comes at a cost: loss of control over details such as
control flow; Handel-C builds an implied state machine to
control the data processors.

Another approach is the hardware compiler which takes
all the hardware design decisions except data-type lengths
away from the designer. This approach has been taken by SA-
C [15, 16] and MATCH [17].

SA-C incorporates common image processing functions
such as array summing for histograms and window loops.
It exploits parallelism primarily through loop unrolling and
low-level pipelining.

These systems take all control away from the designer.
They can achieve real-time operation using an offline de-
sign model. However they can only optimise an algorithm
through pipelining the sequential algorithm.

While many image processing algorithms are inherently
parallel, they are commonly expressed serially, for imple-
mentation on a serial processor. For example a filter is par-
allel in its specification, but is normally implemented as
loops. Most image processing applications involve several
steps which can each run concurrently as pipelined processes.
It is therefore desirable to have a development tool which al-
lows this parallelism to be captured at an appropriate level of
abstraction.

3. CURRENT APPROACH

When implementing algorithms on an FPGA we have used
the design flow shown in Figure 2.

Most of the effort in following this path is in the first
step: mapping an algorithm into a form suitable for FPGA

Develop algorithm
C / Matlab

Map algorithm
to hardware

Implement design
in HDL

Compile
design

Place & route
on target device

Verify implementation
on target device

Behavioural and
functional simulation

Speed/resource
optimisation

System
debug

Figure 2: Image processing on FPGA design flow.

implementation, generally using a stream processing model.
The aim is to make the implementation as efficient as pos-
sible, which we accomplish by coarse-gain pipelining (be-
tween operations), fine-grain pipelining (breaking up oper-
ations), combining operations into one, utilising look up ta-
bles, CORDIC functions, and redesigning a standard algo-
rithm for a single-pass implementation.

This high-level design is then implemented onto hard-
ware using a hardware language, such as Handel-C. There is
a large semantic gap between our design mapping and the
hardware languages used to implement the design. A high-
level language for expressing image processing algorithms in
hardware should make this gap easier to bridge. It should

(i) allow a mixture of parallel and sequential design;
(ii) make it clear to the designer what runs in parallel and

what forms part of a pipeline;
(iii) be able to detect when concurrent processes may access

a shared resource such as a RAM, and manage this ac-
cordingly by informing the designer and giving some
suggestions as to how to resolve the issue;

(iv) be able to handle stream, offline, and hybrid process-
ing models;

(v) include some of the common image processing func-
tions and data types as primitives. Examples include
row and pixel buffering, window filters, and look up
tables (LUT);

(vi) be intuitive and easy to use;
(vii) provide multiple views onto the design.

Currently no system incorporates all of these features, and
this paper describes a system which meets these require-
ments.

Visual design tools can aid in the specification and de-
velopment of image processing algorithms. There have been
a number of different visual image processing languages for
use on a serial computer including Khoros [18] and OpShop
[19]. There are also several general purpose visual languages
which can be used for image processing, including LabView
[20] and Simulink [21]. Khoros, LabView, and Simulink now
have extensions that allow them to be used for FPGA design,
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Figure 3: Architecture view of a barrel distortion correction system showing components, control, and data flows.

although this was not their original purpose. Khoros offers
a high-level view for algorithm development, but it does not
include lower-level design capabilities, as it was not designed
to support the implementation of novel image processing op-
erations. Recently other IP-based systems such as Celoxica’s
PixelStreams [22] and Xilinx’s DSP block sets [23] have been
developed to provide faster development time for projects
and provide similar functionality to Khoros.

These languages all follow a form of the dataflow paral-
digm where streams of data flow through a network of nodes,
each of which performs a computation on the tokens within
the stream before passing the output data to the next node
[24]. It has been noted [25] that dataflow graphs (the natu-
ral visual representation of this programming paradigm) are
an effective representation for problems in digital signal pro-
cessing (DSP), both because they are a natural representa-
tion for many DSP researchers and because they expose par-
allelism in the algorithm with limited constraints on evalua-
tion order.

4. VERTIPH

As discussed in Section 3, textual languages represent con-
currency and complex scheduling poorly. We have devel-
oped VERTIPH, which incorporates a visual representation
for representing the parallel design of image processing algo-
rithms. As image processing algorithms often involve a num-
ber of largely independent processing blocks, a suitable high-
level view allows the designer to specify the data flow through
a sequence of modules. This is then augmented with lower-
level views that support the definition of parallel computa-
tions that make up the higher-level modules. Finally a re-
source and scheduling view is provided, so that the designer
can specify the timing between the operations, and access to
resources. These three are the defined views of the VERTIPH
system: the top-level architecture view, a computational view,
and the scheduling and resource view. A comparison of VER-
TIPH with other HDLs and its required features was pre-
sented in [26]. This work expands on VERTIPH’s features
including data types and operators.

4.1. Architecture view

The architecture view (Figure 3) aims to provide the designer
with a perspective on the overall system. As image process-
ing algorithms are broken up into blocks which perform
very specific processing tasks, they can be developed inde-
pendently and validated using test image data. This view al-
lows the designer to construct an image processing algorithm

as several blocks that operate sequentially on the image data.
Khoros and OpShop are other systems that act at a similar
level.

The use of component blocks allows resources such as
frame buffers to be encapsulated, and related computational
processes to be logically grouped. For example, a frame
buffer component will have both an input stream and an out-
put stream, and it will contain two RAM banks. Other com-
ponents which communicate with this only see address and
data lines and the switching between memory banks can be
done within the component.

Processors which are logically related to each other
are also encapsulated. For example, a colour segmentation
and tracking algorithm detailed in [6, 7], represents each
uniquely coloured detected object as a bounding box. It
stores the bounding boxes for each colour class in a data
structure, and it incorporates processors for tracking-related
bounding boxes between frames and for calculating the po-
sition of all the bounding boxes that have been detected. The
data structure and the processors are logically related and
should therefore be kept together. This idea of encapsulation
borrows from object-orientated software engineering.

Encapsulation simplifies the sharing of data and re-
sources and it becomes clear which processor can access them
and for what purpose. It can in turn make it easier to sched-
ule these processors, as the developer does not need to re-
member all the parts of the system which are related to the
resource or data structure being used.

Hierarchical encapsulation can allow for very complex IP
blocks to be built, with one block and interfaces represent-
ing a complex system of data structures, resources, processes,
and their scheduled operations or response to events. It also
allows for a hierarchy of state machines to be used, with each
component within a component having its own state ma-
chine which may or may not then be controlled by a higher
level of the design.

The aim of the architectural view is to allow logical sep-
aration of image processing operators, to show the data flow
through the operators, and to encapsulate data and proces-
sors related to each operation.

Data types

Data types commonly encountered in image processing in-
clude 16-, 24-, and 32-bit colour, 8- and 16-bit grey scale,
and signed and unsigned integers, and fixed point numbers
of arbitrary size. The user therefore needs to be able to specify
the type of a data stream; that is, its size and format. And, as
communication in FPGAs may be by channel, by register, or
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by wire (no storage), it is appropriate to include path-type
information in the type specification along with the more
traditional size and format information.

The data flow between high-level blocks is shown in
VERTIPH’s architecture view, so the architecture view editor
incorporates type checking to give the user feedback about
whether the data being output from one block is acceptable
as input to another. This happens as soon as a connection is
established between two high-level operators. The data types
of the output that drives the connection and the input that
it feeds into are immediately compared to ensure that they
are of the same type, and the user is informed if they do not
match.

Floating point numbers have not been included within
the system for several reasons: 32- or 64-bit IEEE standard
754 floating point numbers are expensive to implement in
terms of memory, circuit size, and power consumption. Im-
age processing operations generally do not require the dy-
namic range which floating point offers. Fixed point num-
bers offer better overall noise performance when the proba-
bility density function of the signals is uniform [27]. As long
as appropriate fixed point word lengths are chosen, almost all
standard image processing operations can be implemented
(with some degree of rounding error). Fixed point opera-
tions have a small footprint in hardware and lead to lower-
power consumption, thus making them the best choice for
embedded applications [27].

Figure 4 is the dialogue for specifying the size and range
of fixed point numbers in VERTIPH. The dialogue allows the
number of bits before and after the binary point to be altered,
using either a slider interface or a text box.

Another advantage to capturing type information is that
this information can be used to automatically align values
for arithmetic manipulation, and to generate a register of the
correct width to store the result. Figure 5 shows the interme-
diate registers required to implement a multiphase calcula-
tion involving a multiplication, an addition, and a subtrac-
tion. It shows that if the order of operations is changed, the
registers for the intermediate results must be altered. This is
an exacting task, and—if it is performed by the designer—a
fruitful source of errors, but the availability of type informa-
tion in VERTIPH makes it possible to eliminate the errors by
calculating the register sizes automatically.

Specialised operators

Window filters are a very common low-level image process-
ing operator. There are several forms that a window operator
can take in hardware [28], and they need to be tailored to
the application. Therefore a design wizard for constructing
operators of this type has been developed for VERTIPH.

As in other fields, certain patterns are found repeatedly
in the design of image processing systems. Each application
shares some properties with other applications, and each ap-
plication has some unique parameters. We have therefore de-
signed VERTIPH to allow new patterns to be incorporated
into the language as wizards. The window operator is simply
the first of these.

Data Type Editor

Data Type

S7.3

Step Size

0.125

Range

�8.0 : 7.875

Figure 4: Fixed point data type editor.
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Figure 5: Different temporary register sizes depending on arith-
metic order.

4.2. Computational view

Developers who never design their own algorithms can use
the architecture view’s editor to assemble predefined library
modules into a high-level overview like the one shown in
Figure 3. This is similar to the way that other IP-based sys-
tems such as Celoxica’s PixelStreams and Xilinx’s DSP block
sets operate.

However, to allow developers to design their own opera-
tions and to help with buffering, pipeline priming, and syn-
chronisation, a lower level timing view is needed. The com-
putational view aims to improve the visualisation of the con-
current aspects of the low-level computations. To accomplish
this we have modified the Gantt chart notation [29] which
was designed as a visual tool to highlight the temporal re-
lationships and dependencies between phases in large con-
struction projects, and thus make it easy to schedule time-
critical activities. In this notation, time flows from left to
right, so Figure 6(a) shows a sequential set of operations; op-
eration A is followed by operation B, which is followed by
operation C. In Figure 6(b), the operations occur concur-
rently, and in Figure 6(c) they are pipelined. This representa-
tion is an abbreviation of Figure 6(d) which explicitly shows
the parallel repeating processes, the passage of data from one
to the other, and that each process is active in succeeding
phases.

Of course, these basic types can be used together as
shown in Figure 7, which is the pipeline for row process-
ing used by the barrel distortion algorithm [5]. This figure
also shows the if - and while- control structures provided by
VERTIPH, which are based on the control structures used in
Nassi-Shneiderman diagrams [30]. The top bar displays the
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Figure 7: Low-level view of Barrel distortion block showing control functions, timing, and operation representation. Note that text in dashed
boxes are comments added to the figure for clarification; they do not form part of the language.

control expression for the structure, with the vertical bar en-
closing the processors controlled. This pipeline view graphi-
cally conveys to the developer the time required to prime and
flush the pipeline.

Operations can be registered or unregistered with unreg-
istered operations having to be fed into a register before a
clock cycle can finish. To save space on the screen only the
operation or register name is shown, an operations key has
the instructions for the block in a C-type syntax. This view
shows the same information as a textual language but the lay-
out makes the structure of the algorithm easier to visualise.
For example, it is easy to see that the x value must be offset
by 3 before it is used in the calculation of the undistorted x
value. Additional visual linkage between the operations and
the key can be provided by highlighting the operation in the

key when the mouse is moved over the corresponding box,
and vice versa.

The language should, where possible, automatically gen-
erate structures to handle pipeline priming, stalling, and
flushing and it should prompt developers when their design
might be using values from a different stage of the pipeline.

4.3. Resource and scheduling view

In an embedded image processing system using FPGAs there
are a large number of processors competing for access to a
limited number of resources. There are also processors which
can only run after certain events have occurred, such as an
external trigger or another processor finishing. These com-
peting and cooperative processors need to be managed and
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scheduled. VERTIPH facilitates resource sharing by encap-
sulating resources and the processes that act on them, so that
the processes can be scheduled. The resource and scheduling
view also allows for both global scheduling for processors and
for local scheduling within components.

To help the designer avoid resource conflicts such as two
parallel processes accessing an external RAM at the same
time, a resource usage view is incorporated. This view works
like standard Gantt software packages and identifies when re-
sources are used more than once in a time period. The view
can then suggest changes in the ordering of events. In the case
of a multiprocess design, this would involve either modify-
ing start conditions for processes (to ensure they do not run
together) or using semaphores or other similar mechanisms
to arbitrate access to the resource. For a time-critical design
such as stream processing from a video camera, the blocking
approach is not desirable as it can cause data to be lost, such
as when writing from a pixel stream to a frame buffer. Fortu-
nately, blanking periods or pixel buffering can often be used
to allow changes in the scheduling of competing processes.
This view can also help in the scheduling of processes which
run only at specific times—for example, when a new frame is
received—or for identifying where caching of pixels would be
more appropriate than memory access, such as when a RAM
access occurs when another process is using the RAM and no
rescheduling is possible.

One example of this type of resource conflict can occur
when a histogram is being constructed and displayed. It is de-
sirable to construct the histogram while the video stream is
buffered into one RAM. At the same time, in a different clock
domain, both the last full image and its histogram are being
processed or displayed. Keeping one of these processes from
trying to write to one RAM while the other is reading can
be accomplished with a simple condition test. The problem
occurs due to the need to reset the histogram values in each
bin before the histogram construction algorithm is run, as
shown in Figure 8. While this requires a more complex pass-
ing of control of resources from process to process, it can also
lead to error.

5. DISCUSSION

This work has identified several existing languages which are
used for image processing on FPGAs, and commented on
both their benefits and limitations.

A new visual language, VERTIPH, has been presented.
VERTIPH makes sequential, concurrent, and pipelined op-
erations clear to the developer. It also breaks the design pro-
cess into three parts to aid in its implementation. VERTIPH
includes a block-level architecture view similar to many
other DSP block set systems; a computational view based on
Nassi-Shneiderman diagrams that expresses the operations
required in each block; and a resource and scheduling view
to aid in the development of the complex state machines that
are required to respond to events and to avoid resource con-
tention between processors. At present the block-level design
view and data-type implementation are nearing completion,
with the computational and scheduling views still to be im-
plemented.

VERTIPH is only one of several approaches that can be
taken when developing image processing systems on FPGAs;
it is a step towards better tools and methodologies that will
make FPGAs more usable and useful for embedded image
processing applications.
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1. INTRODUCTION

Conventional wireless communications systems employ a
single receiving antenna. Enhanced, antenna array receivers
employing beamforming (BF) and maximal-ratio combin-
ing (MRC) can generate antenna and diversity gain, that is,
increased average and instantaneous (with respect to chan-
nel fading) receiver signal-to-noise ratio (SNR) [1–4]. Al-
though beneficial in terms of performance, these enhanced,
multibranch algorithms can require much larger compu-
tational volumes than the conventional, single-branch re-
ceiver. Recent analytical and simulation studies [1–4] of
a hybrid algorithm entitled maximal-ratio eigencombining
(MREC) claimed efficient performance-complexity tradeoffs
for smart antenna arrays.

Receiver algorithms have traditionally been deployed on
general-purpose, sequential, digital signal processors (DSPs),
or on application-specific integrated circuits (ASICs). En-
hanced receiver algorithms, which are generally highly par-
allelizable, and higher data transmission rates can burden
DSPs beyond their capacity for real-time processing. Time-
critical, highly parallelizable applications are common in ar-
eas ranging from modern communications [5–7] to image
[6] and speech [8] processing, and even bioinformatics [9].

ASICs are hardwired for specific tasks. Although fast (some-
times several orders of magnitude faster than DSPs, through
hardware parallelism) and power-efficient, implemented de-
signs are inflexible [7]. More importantly, ASIC design and
production are time-consuming and extremely expensive for
chips produced in small numbers, due to very high non-
recurring engineering cost.

Unlike ASICs, field-programmable gated arrays (FPGAs)
are reconfigurable, that is, their internal structure is only
partially fixed at fabrication, leaving to the application de-
signer the wiring of the internal logic for the intended
task. This can significantly shorten design and production,
and thus time to market, for FPGA-based embedded sys-
tems. Although FPGAs tend to be slower and to consume
more power than ASICs [7], FPGA reconfigurability can
benefit platform longevity (which is extremely important
in an era of fast-changing wireless communications stan-
dards) by allowing design changes/upgrades even in sys-
tems already in operation. This flexibility can be effectively
exploited for rapid prototyping of advanced communica-
tions signal processing, such as Bell Labs Layered Space-Time
(BLAST) multi-input multi-output (MIMO) architecture for
third-generation Universal Mobile Telecommunications Sys-
tem (UMTS) [5]. Furthermore, an FPGA can, for example,
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implement MRC branches either sequentially, or in paral-
lel, or anywhere in between, depending on required speed,
available chip resources, and power constraints. FPGA-based
implementations concurrently operating several hardware
modules can outpace many times their processor-based
counterparts [6, 9]. An insightful DSP, FPGA, and ASIC
implementation comparison for a four-antenna orthogo-
nal frequency-division multiplexing (OFDM) receiver can be
found in [7].

FPGAs are especially well suited for embedded systems
(e.g., cellular system base station line cards, or mobile sta-
tions) because, beside an area of reconfigurable logical ele-
ments, they can also incorporate large amounts of memory,
high-speed DSP blocks, clock management circuitry, high-
speed input/output (I/O), as well as support for external
memory, and high-speed networking and communications
bus standards. For a small share of the resources, processors
can be included within the FPGA fabric as well [9].

Power consumed in embedded systems is, in general,
strictly limited. Otherwise, line-powered designs would re-
quire special and/or expensive power sources and heat sinks
or may not operate reliably, while portable devices would
quickly deplete the battery [10, 11]. Although FPGA chips
are judiciously manufactured for power efficiency, applica-
tion designers also need to carefully consider this issue be-
cause a consistently underutilized design wastes static and
dynamic powers [10–13].

The objective of this paper is to investigate FPGA suit-
ability for efficient smart antenna array embedded receivers.
In the process, we overview an Altera FPGA-based design
environment, and implement conventional and enhanced
(BF, MRC, MREC) receiver algorithms. It is demonstrated
that FPGA implementations of eigenmode-based combining
adapted to the slow variations in channel statistics can yield
near-optimum bit error rate (BER) performance, for afford-
able power budgets.

The paper is organized as follows Section 2 presents the
received signal model, and overviews BF, MRC, and MREC.
Section 3 describes the Altera software and hardware em-
ployed to design, simulate, analyze, and implement these re-
ceiver algorithms. Comparative performance and cost results
are provided in Section 4.

2. SIGNAL MODEL AND COMBINING METHODS

2.1. Received-signal model

Consider a source transmitting a BPSK signal through a
frequency-flat Rayleigh fading channel, and an L-element re-
ceiving antenna array. After demodulation, matched filter-
ing, and symbol-rate sampling, the complex-valued received
signal vector is given by [4]

ỹ =
√

Esb˜h + ñ, (1)

where dependence on the sampling time is not explicit, to
simplify notation. The L elements ỹi, i = 1 : L � 1, . . . ,L,
of the received signal vector ỹ = [ ỹ1 ỹ2 · · · ỹL]T are called

branches, and the elements ˜hi, i = 1 : L, of the channel vec-

tor ˜h = [˜h1
˜h2 · · · ˜hL]T, are called channel gains. In (1), Es

is the energy transmitted per symbol, and b is the transmit-
ted BPSK symbol, with |b|2 = 1 (b = 1 for transmitted bit
0, b = −1 for transmitted bit 1). We assume that the channel
vector ˜h and the noise vector ñ are complex-valued, mutually

independent, zero-mean Gaussian, with ˜h ∼ CN (0, R
˜h) and

ñ ∼ CN (0,N0IL), respectively. Further assumptions are that
channel fading [14] is frequency-flat with unit variance on
each branch, the noise is temporally white, and the received
signal is interference-free. This signal model is simple, yet
sufficient for basic performance evaluations [15]. Current-
standard wireless communications signaling is beyond the
scope of this work.

2.2. Azimuth angle spread model

Due to radio-wave scattering, transmitted signals are re-
ceived with azimuthal dispersion [14, 16]. Without loss of
generality, numerical results presented herein assume trun-
cated Laplacian power azimuth spectrum (p.a.s.) [4] because
it accurately models empirical results [16]. The p.a.s. root
second central moment is denoted as azimuth spread (AS)
[16]. Analytical expressions for the elements of R

˜h, obtained
through straightforward calculations in [4] for a uniform lin-
ear array (ULA), indicate that antenna correlation (and thus
receiver BER performance [1, 2]) is a function of p.a.s. type,
azimuth spread, average angle of arrival (which is assumed
to be zero with respect to the broadside, for all the results
shown later), and normalized interelement distance dn (i.e.,
the ratio between the physical interelement distance and half
of the carrier wavelength).

The azimuth spread depends on the environment and an-
tenna array location/height, and is variable [16]. Radio chan-
nel measurements for sub/urban scenarios [16] showed that
base station azimuth spread is well modeled as a log-normal
random variable [16, equation (9)]. For typical urban sce-
narios [16, Table I], these measurements found that base-
station azimuth spread correlation decreases exponentially
with the distance traveled by the mobile [16, equation (14)].
The azimuth spread decorrelation distance, that is, the dis-
tance over which the azimuth spread correlation decreases
by a factor of two, was determined as dAS = 50 m [16]. Com-
paring dAS with the fading coherence distance [17, equation
(4.40.b)] dc computed for the typical system parameter val-
ues from Table 1, we conclude that the azimuth spread vari-
ation is much slower (by about 3 orders of magnitude) than
the fading. Furthermore, for this typical urban scenario, it
was found in [16] that Pr(1◦ < AS < 20◦) ≈ 0.8, that is,
azimuth spread is small to moderate, producing significant
(greater than 0.5) correlations between adjacent elements of
a compact ULA, for example, dn = 1 [1, 3].

2.3. MRC and BF

For perfectly known channel (p.k.c.), the optimum (maxi-
mum-likelihood) receiver linearly combines the received
signal vector with the channel vector, that is, it computes
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Table 1: Mobile, channel, and receiver (channel estimation) pa-
rameters.

Parameter Value

Mobile speed v = 60 km/h

Transmitted BPSK symbol rate fs = 10 ksps

Carrier frequency fc = 1.8 GHz

Pilot symbol period [18, Section III.C] Ms = 7

Maximum Doppler frequency fD = 100 Hz

Normalized maximum Doppler frequency fm= fD/ fs=0.01

Channel coherence time [17, equation (4.40.b)] Tc ≈ 1.8 ms

Channel coherence distance
dc = v,

Tc ≈ 30 mm

Interpolator size [18, Section III.D] T = 11

˜hHỹ, and then detects the BPSK symbol as

̂b = sign
[�(˜hHỹ

)]

. (2)

This approach is also known as maximal-ratio combining
(MRC) [19] because it maximizes the SNR (instantaneous,
i.e., conditioned on the channel gains) at the combiner’s out-
put. MRC with L = 1 reduces to the conventional, single-
branch, receiver.

In actual systems, with imperfectly known channel
(i.k.c.), knowledge of the channel gains is acquired through
estimation [1, 18]. The received symbol can then be detected

as ̂b = sign{�[g̃Hỹ]}, where g̃ = [g̃1g̃2 · · · g̃L]T, and g̃i,
i = 1 : L, are the channel gain estimates. This combining
approach has often been employed and studied [1, 3, 15, 19],
although it is suboptimal (when the channel gains are not
independent and identically distributed—non-i.i.d.)[3].

MRC is known to provide full diversity gain [19]—that
is, the greatest performance improvement, averaging over
fading and noise, compared to a single-branch system—for
i.i.d. branches. This requires either widely spaced elements,
which are unfeasible for pocketsize mobile stations, or rich
scattering, which is unlikely at base stations [16].

For narrow azimuth spread, received signals are highly
correlated [1, 2] and the received signal energy, proportional
to tr(R

˜h) � ∑L
i=1(R

˜h)i,i =
∑L

i=1 λi, where λi, i = 1 : L, are the
eigenvalues of R

˜h, is concentrated within the first few eigen-
modes. Then, the channel is said to be spatially nonselective,
and the available diversity gain is small [20–22]. Enhanced
performance can then be obtained by taking advantage of an-
tenna gain using maximum average SNR beamforming (BF),
that is, by combining the received signal vector with the dom-
inant eigenvector of R

˜h [1–4]. Increasing azimuth spread de-
creases antenna correlation, that is, the channel becomes spa-
tially more selective and higher diversity gain becomes avail-
able [1–4]. In subsequent sections, we show how to exploit
available antenna and diversity gains within complexity and
power constraints.

2.4. Eigencombining method

BF has traditionally been applied in scenarios with very small
azimuth spread. Otherwise, MRC has been employed. How-
ever, it was recently claimed that a unifying approach, called
maximal-ratio eigencombining (MREC), and described
below, can adapt to channel correlation (i.e., azimuth spread)
variation [1–4, 20]. Our analytical and simulation results
have shown that MREC may thus outperform MRC and BF
in terms of BER performance and complexity [1–4].

The channel correlation matrix R
˜h has real nonnegative

eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λL ≥ 0, orthonormal eigenvec-
tors ei, i = 1 : L, and can be decomposed as R

˜h = ELΛΛΛLEH
L ,

where ΛΛΛL � diag{λi}Li=1 is a diagonal matrix, and EL �
[e1e2 · · · eL] is a unitary matrix. Hereafter, R

˜h,ΛΛΛL, and EL are
assumed perfectly known because, in practice, enough inde-
pendent channel samples would be available for an accurate
estimation. Actual MREC could employ computationally in-
significant low-rate eigenstructure updating [20].

MREC of order N consists of the following steps [1–4]:

(i) Karhunen-Loève transformation (KLT) [22] of the re-
ceived signal vector from (1) with the full-column rank
matrix EN � [e1e2 · · · eN ]; the elements of the trans-
formed signal vector, y = EH

N ỹ = √

EsbEH
N
˜h + EH

N ñ =
√

Esbh + n, are denoted as eigenbranches;
(ii) MRC of the N eigenbranches.

The components of the transformed channel gain vector h =
EH
N
˜h are further referred to as channel eigengains. They are

mutually uncorrelated, with zero mean, and variances σ2
hi

�
E{|hi|2} = λi, that is, Rh � E{hhH} = ΛΛΛN = diag{λi}Ni=1,
for any channel gain distribution [21]. From the initial as-
sumptions on fading and noise we obtain h ∼ CN (0,ΛΛΛN ),
and n = EH

N ñ ∼ CN (0,N0IN ), so that the eigengains are in-
dependent, which supports straightforward MREC analysis
[1–4].

Of all possible transforms, the KLT packs the largest
amount of energy from the original, L-dimensional signal
vector ỹ into the transformed, N-dimensional signal vector
y [22], which is desirable for dimension (i.e., complexity) re-
duction. Note also that MREC of order N = 1 represents in
fact BF, while it can be shown that full-MREC, that is, MREC
of order N = L, is equivalent to MRC [1–4].

2.5. Order selection for MREC

A simple criterion for optimal MREC order selection is [21]

min
N=1:L

[

Es ·
L
∑

i=N+1

λi + N0 ·N
]

, (3)

better known as the bias-variance tradeoff criterion [3, 4]
(BVTC) because (3) balances the loss incurred by remov-
ing the weakest (L − N) intended-signal contributions (the
first term) against the residual-noise contribution (the sec-
ond term). Computer evaluations found the BVTC effec-
tive for MREC adaptation to channel conditions [3, 4]. Note
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Figure 1: FPGA development system hardware/software diagram.

however that since BVTC disregards the MREC complexity,
it can overload limited resources.

A different MREC adaptation criterion is described next.
Assume that signals received (independently) from Nu mo-
bile stations require processing at a base station with only
Ne � NuL available eigenbranch processing modules. Then,
a control algorithm determines the largest (dominant) Ne

eigenmodes among all transmitting mobiles, and allocates
available resources accordingly. For instance, if a receiving
antenna array system with L = 4 elements has only Ne = 3
available eigenbranch processing modules while Nu = 2, the
available resources are allocated as follows: if the 3 largest
eigenvalues (out of NuL = 8) are such that two correspond
to User 1, and one to User 2, then two eigenbranch process-
ing modules are allocated to process the received signal vec-
tor from User 1, and the other available eigenbranch is al-
located to User 2. This approach to selecting eigenbranches
for MREC is hereafter denoted as the eigenvalue-based trade-
off criterion (EVTC), while MREC adapted based on EVTC is
referred to as EVTC MREC.

2.6. Channel estimation using pilot-symbol-aided
modulation (PSAM)

In PSAM, the transmitter periodically inserts known pilot
symbols bp of energy Ep (= Es for results shown herein), into
the information-encoding symbol stream, and the receiver
interpolates the pilot samples acquired across several slots
to estimate the channel during data symbols [1–4, 18]. The
notation (t,m) is used below to denote temporal indexing,
where t = −T1 : T2 is the time slot index, and m = 0 : Ms− 1
is the symbol index within the slot of length Ms. Here t = 0
refers to the slot in which estimation takes place, m = 0 cor-
responds to pilot symbols, and m = 1 : Ms − 1 corresponds

to data-encoding symbols; T = T1 + T2 + 1 slots (in general,
T1 = T2) are used for interpolation.

The estimate of the ith eigengain at the mth data symbol
position in the current slot can be written as

gi(0,m) = vH
i (m)ri, (4)

where vi(m) is the interpolation filter and

ri �
1

√

Epbp

[

yi
(− T1, 0

)

, . . . , yi
(

T2, 0
)]T

(5)

contains the samples taken during pilot symbols.
The interpolation filter chosen for the numerical results

shown later is the filter with brick-wall-type frequency re-
sponse, which is optimum in the absence of noise; we will
refer to this filter, with impulse-response tapered by a raised-
cosine window [1, 2], as the SINC filter, and the correspond-
ing estimation approach as SINC PSAM. The interpolator
coefficients, given by

[

v(m)
]

t+T1+1 = sinc
(

m

M
− t
)

cos[πβ(m/M − t)]
1− [2β(m/M − t)]2

, (6)

enter the FPGA-based receiver designs from Section 4. Note
that channel estimation is among the most demanding re-
ceiver functions resource-wise [5].

3. FPGA HARDWARE AND SOFTWARE

3.1. FPGA system description

CMC Microsystems provided the system shown in Figure 1.
The Altera DSP Development Kit Stratix Professional
Edition, which comprises the Stratix EP1S80 DSP develop-
ment board, is built around the Stratix EP1S80B956C6 FPGA
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chip, and comes with the DSP Builder interface to the Quar-
tus II design flow.

Quartus II provides a comprehensive design, synthesis,
and analysis environment for system-on-a-programmable-
chip (SoPC) applications. DSP Builder helps, create the
hardware representation of the required digital signal pro-
cessing functions using the MATLAB and Simulink user-
friendly algorithm-development environments, for shorter
design and implementation cycles. MATLAB functions and
native Simulink blocks can be combined with Altera DSP
Builder library blocks (see Figure 1) to create FPGA designs
which can be simulated under Simulink. For automated de-
sign flow, the “signal compiler” block, which is at the core
of DSP Builder, can generate hardware description language
(HDL) code, and scripts for Quartus II-based synthesis and
fitting from within Simulink. Furthermore, the DSP Builder
“hardware in the loop” (HIL) block enables chip program-
ming for hardware-software cosimulation.

3.2. Power usage considerations

Power loss in FPGA devices can be categorized as static
and dynamic [10–13]. Static (standby) power is consumed
by the chip when no input signals are exercised [10]. This
loss occurs due to transistor leakage, which is frequency-
independent, but highly dependent on junction tempera-
ture and transistor size. Static power has been increasing
(exponentially, at processes below 0.25 μm [11]) with each
finer semiconductor technology, to become the dominant
loss component in current chips. This is a concern for de-
signers of portable embedded systems which spend long in-
tervals in standby mode [10]. Dynamic power is consumed
in normal operation, due to the charging and discharging of
the internal capacitive loads, and is proportional to gate out-
put load, square of the supply voltage, clock frequency, and
gate switching activity [10–13]. Although the supply volt-
age has decreased significantly in newer process technologies,
high operating frequencies can still yield significant dynamic
power losses [10]. A tight power budget may thus limit clock
speed.

Line-powered embedded systems are more competitive
when they require less expensive power supplies and cooling
devices [10]. Designs for portable products should aim for
the longest possible battery life. Moreover, devices operating
at high temperatures can become unreliable, emphasizing the
importance of minimizing power consumption in embedded
systems. FPGA structure is judiciously designed to minimize
power losses [10–12, 23]. Nonetheless, power-aware applica-
tion design can also increase efficiency, for example, by using
gated clock signals, and thus virtually turning off unneces-
sary chip sections [10, 12, 23]. Gating as close as possible to
the clock source is a good practice since clock signal trees
are important dynamic power consumers [12]. On the other
hand, static power consumption can be reduced by adap-
tive distribution of available FPGA resources, as shown in
Section 4.3.

For the designs described further below, we relied on
Quartus II reports on resource usage, for example, the num-

ber of logic elements (LEs), chip pins, and dedicated 9×9-bit
DSP blocks. Static and dynamic power losses were estimated
using the Quartus II Powerplay analyzer (dynamic power was
estimated for default toggle rates of 12.5%).

4. FPGA-BASED WIRELESS COMMUNICATIONS
RECEIVERS

For the system shown in Figure 1, we focus on FPGA-based
receiver algorithm implementation, assuming availability of
digitized received signals. The transmitted signal and chan-
nel/receiver impairments, that is, noise and temporally and
spatially correlated fadings, are generated in MATLAB and
Simulink. Various receiver algorithms were simulated and
run from the FPGA, through DSP Builder HIL. Computer
simulations and the corresponding hardware/software HIL
co-simulations were found to perform identically. Computa-
tions done in MATLAB or with native Simulink blocks are
very precise, due to floating-point number representation.
On the other hand, DSP Builder relies on fixed-point rep-
resentation, which can limit the dynamic range and can in-
troduce quantization noise.

As mentioned earlier in Table 1, we consider a scenario
with Doppler spread fD = 100 Hz and transmission rate fs =
10 ksps, that is, normalized Doppler spread fm = 0.01 Hz.
PSAM with slot length MS = 7 (1 pilot symbol followed by 6
information-encoding symbols) is combined with SINC in-
terpolation over T = 11 slots (T1 = T2 = 5), for channel
estimation as in (4)–(6). ULA with dn = 1 is assumed to pro-
vide the received signals for the enhanced receivers.

4.1. Conventional, single-branch versus enhanced,
multibranch MRC receivers

In this section, a conventional, single-branch receiver, and an
enhanced MRC receiver, with L = 2 i.i.d. branches, are con-
sidered. We employ the well-established Jakes’ model [14] for
temporal channel fading correlation, with parameters given
in Table 1. For BPSK, receiver BERs were computed for per-
fectly known channel (p.k.c.), as well as imperfectly known
channel (i.k.c.) for SINC PSAM. We verified that BER ex-
pressions derived in [1] and the corresponding MATLAB
simulation results agree closely for p.k.c. as well as for i.k.c.
Then, for i.k.c., FPGA-based designs were simulated as well
as hardware-software (HIL) cosimulated. For HIL cosimula-
tion, the receiver design is compiled and then downloaded
into the FPGA chip. Afterwards, received signals emulated
using MATLAB are processed online by the programmed
FPGA. In terms of numerical representation precision within
the FPGA for the computer-generated received signal ỹ, two
cases are compared next: (1) 8 bits for the integer part and 8
bits for the fractional part (denoted further as 8.8); (2) the 4.4
case. Finally, the channel gain estimation root mean-square
error (RMSE) is determined from theory [4], simulations,
and HIL implementations.

The upper part of Figure 2 shows the Simulink/DSP
Builder design involved in channel gain estimation for one
branch, while the lower part details our “SINC interpolator”
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Figure 2: Simulink model detail with DSP Builder blocks implementing channel gain estimation (through SINC interpolation) for MRC.

design. (Symbols appear without the tilde due to Simulink
editing limitations.) The upper “shift taps” DSP Builder
blocks delay the received signal by (T1 + 1)Ms = 42 sam-
ples, while the “multiply-add” block computes �(g̃∗1 ỹ1),
used as test variable for symbol detection. Since the DSP
Builder blocks “sum of products” in the “SINC interpolator”
design require integer input and coefficients, binary shift-
ing of the received signal and interpolator coefficients (com-
puted from [1, Table 1]) is required. The “SINC interpolator”
“shift taps” block outputs �(r̃1), see (5), while the “parallel
Adder/Subtractor” outputs�(g̃1)—see (4). The interpolator
output is then used for combining. Notice that channel esti-
mation can be very demanding resource-wise, especially for
multibranch receivers.

The RMSE subplot in Figure 3 indicates that 4.4 and
8.8 fixed-points FPGA computation does not visibly de-
grade channel estimation accuracy compared to floating-
point (computer) computation. Nevertheless, the lower sub-
plots show that fixed-point computation with narrow word
(i.e., poor precision, narrow dynamic range) can significantly
degrade BER performance, an effect which cumulates with
more branches.

Figure 3 also indicates that the performance degrada-
tion (i.e., about 3.4 dB) which occurs for a conventional re-
ceiver due to i.k.c. can be successfully compensated for an
FPGA-based dual-branch MRC, due to its diversity gain.
Confidence intervals for all these results are very tight, since
10 000 slots, that is, 60, 000 data symbols, were detected.
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Figure 3: (a) RMSE for channel gain estimates. (b) and (c) Perfor-
mance of the conventional, single-branch receiver, and of the dual-
branch MRC receiver for various computer- and FPGA-based im-
plementations. Fixed-point results correspond to both DSP Builder-
based simulations and HIL implementations.

For designs shown hereafter, we settled for an 8.8-
representation, since it was found to offer a fair compro-
mise between representation accuracy/dynamic range (i.e.,
receiver performance) and FPGA resource utilization. Fur-
thermore, we instructed DSP Builder to allocate hard-wired
DSP circuitry embedded into the reconfigurable FPGA fab-
ric, which yields effective and efficient chip utilization [7].
Then, Quartus II reports on FPGA resource usage, maxi-
mum allowable clock frequency (CF), and dynamic power
(DP) usage, as shown in Table 2. Estimated static power
loss is 1.395 W. Note that for the BER advantage shown

Table 2: Resource usage for 8.8 implementations of MRC, BF, and
adaptive MREC, for up to L = 4 branches.

Method
LEs Pins DSP CF DP

(79 040) (692) (176) (MHz) (mW)

MRC 13,227 43 16
41.06 69.35

L = 1 16.73% 6.21% 9.09%

MRC 26,478 83 32
38.56 119.67

L = 2 33.49% 11.99% 18.18%

MRC 39,731 123 48
38.35 169.78

L = 3 50.27% 17.77% 27.27%

MRC 55,983 167 64
36.74 221.62

L = 4 70.83% 24.13% 36.36%

BF 13,457 259 48
40.57 74.95

L = 4 17.02% 37.43% 27.27%

BVTC MREC 13,458 262 48
41.15 74.95

L = 4, N = 1 17.02% 37.86% 27.27%

BVTC MREC 26,940 358 96
39.73 130.89

L = 4, N = 2 34.08% 51.73% 54.54%

BVTC MREC 40,423 454 144
39.09 186.64

L = 4, N = 3 51.14% 65.60% 81.81%

BVTC MREC 55,847 550 176
38.82 244.64

L = 4, N = 4 70.66% 79.48% 100%

EVTC MREC 13,561 424 48
41.09 75.67

L = 4, N = 1 17.16% 61.27% 27.27%

EVTC MREC 27,372 524 96
39.14 132.95

L = 4, N = 2 34.63% 75.72% 54.54%

EVTC MREC 40,983 624 144
35.43 189.23

L = 4, N = 3 51.85% 90.17% 81.81%

in Figure 3 over the conventional receiver, dual-branch
MRC nearly doubles resource requirements and dynamic
power loss. Since the MRC performance gradient dimin-
ishes with increasing number of branches [4], implementa-
tion/operational costs can be minimized either with tightly
matched chips, or through clock gating of excess resources.

In the above MRC receiver design, channel gains on dif-
ferent branches were considered statistically independent, for
simplicity. However, this is rarely the case in practice [16].
Although scattering is richer around the mobile than around
the base station, mobile antenna array size limitations can
still lead to large interbranch correlation, that is, scarce diver-
sity gain availability. Then, adaptive MREC [3, 4] may pro-
vide more suitable tradeoffs between performance and re-
source/power utilization, as shown next.

4.2. Enhanced MREC receiver designs: the case of
a single user processed per FPGA chip

We extended the previously discussed FPGA-based MRC re-
ceiver design to support L = 4 branches, and also designed
the BF, and the BVTC adaptive MREC receivers. See Table 2
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Figure 4: Transmitter, channel, and FPGA-based BVTC MREC receiver diagram.

for the resource and power usage report. Note that a stand-
alone BF implementation takes about as many resources as
order-1 MREC takes in the BVTC MREC implementation
since these two designs are almost identical. Furthermore,
MRC can be obtained from an MREC design by bypass-
ing the KLT. Thus, an MREC design can easily be recon-
figured (even during operation, on the fly) to implement
BF or MRC instead. Implementation details are provided in
Figure 4, for the case when the receiver implements BVTC
adaptive MREC.

For resource/power usage and performance evaluation,
we model a typical urban scenario for realistic channel con-
ditions from the base station perspective [16], and apply
the conventional and enhanced receiver combining algo-
rithms (after estimating channel gains and eigengains as in
Section 2.6) to detect the transmitted symbols. Using MAT-
LAB and Simulink, the actual log-normal distributed, time-
correlated azimuth spread is simulated and then employed
to compute the spatial correlation matrix, for realistic Lapla-
cian power azimuth spectrum (p.a.s.) [16]—see Figure 4. In
an actual embedded receiver, the channel correlation matrix
and its eigenvalue decomposition could be updated by a pro-
cessor (e.g., Altera’s soft-core FPGA-based Nios II). We se-
lected a correlation update period of 0.14 second (denoted
further as a frame, corresponding to a distance of roughly
2.3 m traveled by the mobile) since the azimuth spread re-
mains relatively constant over this interval [16], providing

the processor with sufficient time and uncorrelated samples
for eigenstructure updating [3, 4]. The computed correlation
matrix R

˜h inputs a customized Simulink “multipath Rayleigh
fading channel” block to simulate L = 4 correlated branches.

The top subplot in Figure 5 depicts an azimuth spread se-
quence generated using the model described in Section 2.2.
The predominantly small-to-moderate azimuth spread val-
ues indicate that we should often expect significant spatial
correlation [1, 3], that is, small available diversity gain. Per-
formance enhancement can then arise from BF antenna gain.
Occasionally however, the azimuth spread can also become
fairly large, but then the available diversity gain cannot ben-
efit BF performance. On the other hand, significant diver-
sity gain may be available too infrequently to justify perma-
nent use of an MRC receiver. As we will see, an FPGA-based
MREC receiver can provide, for a channel with slowly vary-
ing statistics, flexibility that yields affordable performance.

The main benefit of an FPGA-based BVTC adaptive
MREC receiver is that unnecessary eigenbranches can be
virtually turned off using the clock gating technique [12] to
reduce dynamic power loss, while necessary eigenbranches
can be implemented to run in parallel, for high speed. Ex-
empting weak eigenbranches can also benefit performance
[1]. Furthermore, as mentioned earlier, an MREC imple-
mentation can easily be reduced to standalone BF or MRC
implementations, if required, either at system setup or dur-
ing operation.
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Typical urban scenario: v = 60 km/h, dAS = 50 m
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Figure 5: Azimuth spread, MREC order selected with the BVTC,
and BER performance (averaging over trial) for BF, MRC, and
BVTC MREC.

Altera documentation states that clock gating is avail-
able only through lower-level (Quartus II) design. Therefore,
clock gating was only emulated in DSP Builder, for the BVTC
MREC implementation shown in Figure 4. First, nonadap-
tive MREC designs with N = 1 : 4 eigenbranches were com-
piled to determine their resource usage (shown in Table 2).
Then, after each eigenstructure update during the BVTC
MREC simulation, we stored the selected MREC orders and
disconnected unused eigenbranches from the active struc-
ture. Finally, average resource usage was computed. Figure 5
shows in the middle subplot the MREC order selected adap-
tively using the BVTC, and in the lower subplot the BER av-
eraged over the trial. Notice that for L = 4, MRC and BVTC
adaptive MREC slightly outperform BF, and greatly outper-
form the single-branch receiver.

For the same typical urban scenario and system param-
eters, Figure 6 shows resource usage, in percentage points of
the total available, and dynamic power consumption, aver-
aged over 8 trials. In each trial, the azimuth spread sam-
ples are correlated, as described in Section 2.2, but the az-
imuth spread sequences are independent between trials. Note
that BF and BVTC MREC require a significantly smaller
share of the FPGA programmable fabric, that is, LEs, com-
pared to MRC (for L = 4), but more dedicated DSP
blocks, due to KLT. The upper-right subplot appears to im-
ply more chip pins demand for BF and MREC, because a
MATLAB/Simulink-computed eigenvector matrix EN inputs
the FPGA. Nevertheless, eigenstructure updating is possible
with a soft processor, from within the FPGA.

Figure 7 shows performance and total (dynamic + static)
power used by a cellular operator’s large network of base
stations similar to the one described in [11]. The single-

branch receiver consumes least but performs poorly. For per-
formance similar to BF and BVTC MREC, MRC (with L = 4)
doubles the dynamic power loss (see also Figure 6(d)). Thus,
BF and BVTC MREC appear to provide a better tradeoff. Re-
call however that a compact ULA with dn = 1 is considered.
For larger interelement distances (feasible at base stations),
MREC with more than one eigenbranch can significantly
outperform BF [4].

Note that significant branch correlation can occur even
at mobile stations, due to limited antenna spacing, so that an
FPGA-based BVTC MREC implementation employing clock
gating can efficiently achieve near-optimum performance.

Notice from Figure 5(b) that, frequently, only one or
two (out of the four implemented) eigenbranches were actu-
ally employed for MREC for that particular azimuth spread
sequence. Similar results were obtained in other trials for
independent azimuth spread sequences. This suggests that
adaptive FPGA chip resource allocation among several ac-
tive users may significantly increase base station user process-
ing capacity, or, equivalently, reduce the required number of
FPGA chips per base station, lowering both hardware cost
and static power losses. A possible path towards such imple-
mentations is described next.

4.3. Enhanced MREC receiver designs: the case
of two users processed per FPGA chip

EVTC-based adaptive MREC, described in Section 2.5, can
provide more consistent use of the FPGA chip, compared to
BVTC MREC. We propose to efficiently exploit a total of 3
eigenbranch processing modules, which fit into our FPGA, to
process concurrently the signals received with L = 4 branches
from two mobiles (without interference). Rather than per-
manently allotting chip processing resources to a certain user
(which may or may not need to use them, depending on
channel conditions and required performance), herein we
will adaptively deploy these resources to simultaneously de-
tect the symbols transmitted from two mobiles.

Resource usage information for EVTC MREC when N =
1 : 3 eigenbranches are selected can be found in Table 2.
Note that the BVTC and EVTC MREC implementations dif-
fer significantly only in the required number of chip pins.
The larger number of pins required for EVTC MREC (to in-
put the received signals from two mobiles) limits to 3 the pos-
sible number of implemented eigenbranches. Larger Ne leads
to unsuccessful compilation. Mutually independent azimuth
spread sequences for the signals arriving at the base station
from the two mobile stations were simulated, as shown in the
top subplots of Figure 8. The MREC orders selected with the
EVTC for each of the users are shown in the middle subplots.
The lower subplots indicate that EVTC MREC can perform
remarkably close to the enhanced receivers discussed previ-
ously.

Figure 9(a) indicates that our FPGA would not fit con-
current four-branch MRC implementations for the two
users. On the other hand, the successfully compiled two-user
EVTC MREC implementation with Ne = 3 requires about
half of the dynamic power consumed by MRC, for similar
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Figure 6: Average resource and dynamic power usage for BF, BVTC MREC, and MRC, over 8 trials with mutually independent azimuth
spread sequences.

performance. Furthermore, since EVTC MREC allows for ef-
fective concurrent processing of two users on a single FPGA,
it yields a twofold reduction in static power consumption or
a doubling of the base station user processing capacity. Thus,
both implementation and operational costs can be drastically
reduced with EVTC MREC.

Ideally, an FPGA-based embedded base station receiver
would comprise: (1) a number of FPGAs programmed for
KLT, channel estimation, signal combining, and symbol de-
tection; (2) an embedded processor monitoring each user’s
channel conditions (i.e., eigenmodes). At the beginning of
each frame, the embedded processor browses a user hierar-
chy, and allocates the FPGA resources so as to achieve de-
sired performance for minimum resource/power consump-
tion [3, 4]. Thus, it is possible that for a certain period, sev-
eral users whose respective received signals are highly corre-
lated will share the resources of a single FPGA because none
of them will demand a large number of eigenbranches. If
the azimuth spread for one of these users later widens sig-
nificantly (yielding more available diversity gain) or if its
SNR degrades (while a certain steady performance level is
imposed), a larger share of the FPGA resources can be al-

located accordingly. An FPGA-based embedded system for a
performance- and a power-aware antenna array receivers can
thus be flexibly implemented.

5. CONCLUSIONS

We have described and implemented adaptive techniques
that enhance the performance and reduce the power
consumption for Altera-FPGA-based embedded wireless
receivers. We found that smart antenna array receiver algo-
rithms, for example, beamforming (BF) and maximal-ratio
combining (MRC), outperform the conventional, single-
branch receiver, but the performance gain may not always
justify the additional implementation and operational costs.
Tracking the slowly varying dominant channel eigenmodes,
and using maximal-ratio eigencombining (MREC) is found
to benefit more than BF and MRC from the parallelism
and flexibility of FPGA-based implementation. For simi-
lar performance, a twofold increase in user processing ca-
pacity or decrease in power consumption is found possi-
ble over MRC, for a typical urban scenario and 4 receiv-
ing antennas. Adaptive MREC outperforms BF, for slightly
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higher resource consumption. FPGA flexibility and wide
range of on-chip resources can thus yield very efficient
embedded implementations of adaptive receivers for cur-
rent and future generations of wireless communications
systems.
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1. INTRODUCTION

Nowadays, networked embedded systems consist of several
control units typically connected via a shared communica-
tion medium and each control unit is specialized to execute
certain functionality. Since these control units typically con-
sist of a CPU with certain peripherals, hardware accelerators,
and so forth, it is necessary to integrate methods of fault-
tolerance for tolerating node or link failures. With the help of
reconfigurable devices such as field-programmable gate ar-
rays (FPGA), novel strategies to improve fault tolerance and
adaptability are investigated.

While different levels of granularity have to be consid-
ered in the design of fault-tolerant and self-adaptive recon-
figurable networked embedded systems, we will put focus on
the system level in this article. Different to architecture or
register transfer level, where the methods for detecting and
correcting transient faults such as bit flips are widely ap-
plied, static topology changes like node defects, integration
of new nodes, or link defects are the topic of this contri-
bution. A central issue of this contribution is online hard-
ware/software partitioning which describes the procedure of
binding functionality onto resources in the network at run-
time. In order to allow for moving functionality from one
node to another and execute it either on hardware or software
resources, we will introduce the concepts of task migration

and task morphing. Both task migration as well as task mor-
phing require hardware and/or software checkpointing mech-
anisms and an extended design flow for providing an appli-
cation engineer with common design methods.

All these topics will be covered in this article from a for-
mal modeling perspective, the design methodology perspec-
tive, as well as the implementation perspective. As a result,
we propose an operating system infrastructure for networked
embedded systems, which makes use of dynamic hardware
reconfiguration and is called ReCoNet.

The remainder of the article is structured as follows.
Section 2 gives an overview of related work including dy-
namic hardware reconfiguration and checkpointing strate-
gies. In Section 3, we introduce our idea of fault-tolerant
and self-adaptive reconfigurable networked embedded sys-
tems by describing different scenarios and by introducing a
formal model of such systems. Section 4 is devoted to the
challenges when designing a ReCoNet-platform, that is, the
architecture and the operating system infrastructure for a Re-
CoNet. Finally, in Section 5 we will present our implementa-
tion of a ReCoNet-platform.

2. RELATED WORK

Recent research focuses on operating systems for single
FPGA solutions [1–3], where hardware tasks are dynamically
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assigned to FPGAs. In [1] the authors propose an online
scheduling system that assigns tasks to block-partitioned de-
vices and can be a part of an operating system for a reconfig-
urable device. For hardware modules with the shape of an ar-
bitrary rectangle, placement methodologies are presented in
[2, 3]. A first approach to dynamic hardware/software parti-
tioning is presented by Lysecky and Vahid [4]. There, the au-
thors present a warp configurable logic architecture (WCLA)
which is dedicated for speeding up critical loops of embed-
ded systems applications. Besides the WCLA, other architec-
tures on different levels of granularity have been presented
like PACT [5], Chameleon [6], HoneyComb [7], and dy-
namically reconfigurable networks on chips (DyNoCs) [8]
which were investigated intensively too. Different to these re-
configurable hardware architectures, this article focuses too
on platforms consisting of field-programmable gate arrays
(FPGA) hosting a softcore CPU and free configurable hard-
ware resources.

Some FPGA architectures themselves have been devel-
oped for fault tolerance targeting on two objectives. One di-
rection is towards enhancing the chip yield during produc-
tion phase [9] while the other direction focuses on fault tol-
erance during runtime. In [10] an architecture for the latter
case that is capable of fault detection and recovery is pre-
sented. On FPGA architectures much work has been pro-
posed to compensate faults due to the possibility of hard-
ware reconfiguration. An extensive overview of fault mod-
els and fault detection techniques can be found in [11].
One approach suitable for FPGAs is to read back the con-
figuration data from the device while comparing it with
the original data. If the comparison was not successful the
FPGA will be reconfigured [12]. The reconfiguration can
further be used to move modules away from permanently
faulty resources. Approaches in this field span from remote
synthesis where the place and route tools are constrained
to omit faulty parts from the synthesized module [13] to
approaches, where design alternatives containing holes for
overlying some faulty resources have been predetermined
and stored in local databases [14, 15].

For tolerating defects, we additionally require check-
pointing mechanisms in software as well as in hardware. An
overview of existing approaches and definitions can be found
in [16]. A checkpoint is the information necessary to recover
a set of processes from a stored fault-free intermediate state.
This implies that in the case of a fault the system can re-
sume its operation not from the beginning but from a state
close before the failure preventing a massive loss of compu-
tations. Upon a failure this information is used to rollback
the system. Caution is needed if tasks communicate asyn-
chronously among themselves as it is the case in our pro-
posed approach. In order to deal with known issues like the
domino effect, where a rollback of one node will require a
rollback of nodes that have communicated with the faulty
node since the last checkpoint, we utilize a coordinated check-
pointing scheme [17] in our system. In [18] the impact of
the checkpoint scheme on the time behavior of the system
is analyzed. This includes the checkpoint overhead, that is,
the time a task is stopped to store a checkpoint as well as the

latencies for storing and restoring a checkpoint. In [19], it
is examined how redundancy can be used in distributed sys-
tems to hold up functionality of faulty nodes under real-time
requirements and resource constraints.

In the FPGA domain checkpointing has been seldomly
investigated so far. Multicontext FPGAs [20–22] have been
proposed, that allow to swap the complete register set (and
therefore the state) among with the hardware circuit between
a working set and one or more shadow sets in a single cy-
cle. But due to the enormous amount of additional hard-
ware overhead, they have not been used commercially. An-
other approach for hardware task preemption is presented in
[23], where the register set of a preemptive hardware mod-
ule is completely separated from the combinatorial part. This
allows an efficient read and write access to the state by the
cost of a low clock frequency due to routing overhead aris-
ing by the separation. Some work [24, 25] has been done to
use the read back capability of Xilinx Virtex FPGAs in order
to extract the state information in the case of a task preemp-
tion. The read back approach has the advantage that typically
hardware design-flows are nearly not influenced. However,
the long configuration data read back times will result in an
unfavorable checkpoint overhead.

3. MODELS AND CONCEPTS

In this article, we consider networked embedded systems
consisting of dynamically hardware reconfigurable nodes.
The nodes are connected via point-to-point communication
links. Moreover, each node in the network is able, but is not
necessarily required, to store the current state of the entire
network which is given by its current topology and the dis-
tribution of the tasks in the network.

3.1. ReCoNet modeling

For a precise explanation of scenarios and concepts an ap-
propriate formal model is introduced in the following.

Definition 1 (ReCoNet). A ReCoNet (gt, ga,βt,βc) is repre-
sented as follows.

(i) The task graph gt = (Vt,Et) models the application
implemented by the ReCoNet. This is done by com-
municating tasks t ∈ Vt. Communication is modeled
by data dependencies e ∈ Et ⊆ Vt ×Vt .

(ii) The architecture graph ga = (Va,Ea) models the
available resources, that is, nodes in the network n ∈
Va and bidirectional links l ∈ Ea ⊆ Va×Va connecting
nodes.

(iii) The task binding βt : Vt → Va is an assignment of
tasks t ∈ Vt to nodes n ∈ Va.

(iv) The communication binding βc : Et → Ei
a is an

assignment of data dependencies e ∈ Et to paths
of length i in the architecture graph ga. A path p of
length i is given by an i-tuple p = (e1, e2, . . . , ei) with
e1, . . . , ei ∈ Ea and e1 = {n0,n1}, e2 = {n1,n2}, . . . ,
ei = {ni−1,ni}.
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Figure 1: Different scenarios in a ReCoNet. (a) A ReCoNet consisting of four nodes and six links with two communicating tasks. (b) An
additional task t3 was assigned to node n1. (c) The link (n1,n4) is broken. Thus, a new communication binding is mandatory. (d) The defect
of node n4 requires a new task and communication binding.

Example 1. In Figure 1(a), a ReCoNet is given. The task
graph gt is defined by Vt={t1, t2} and Et={(t1, t2)}. The ar-
chitecture graph consists of four nodes and six links, that is,
Va={n1,n2,n3,n4} and Ea={{n1,n2}, {n1,n3}, {n1,n4},
{n2,n3}, {n2,n4}, {n3,n4}}. The shown task binding is
βt = {(t1,n1), (t2,n4)}. Finally, the communication binding
is βc = {((t1, t2), ({n1,n4}))}.

Starting from this example, different scenarios can occur.
In Figure 1(b) a new task t3 is assigned to node n1. As this as-
signment might violate given resource constraints (number
of logic elements available in an FPGA or number of tasks
assigned to a CPU), a new task binding βt can be demanded.
A similar scenario can be induced by deassigning a task from
a node.

Figure 1(c) shows another important scenario where the
link (n1,n4) is broken. Due to this defect, it is necessary to
calculate a new communication binding βc for the data de-
pendency (t1, t2) which was previously routed over this link.
In the example shown in Figure 1(c), the new communi-
cation binding is βc((t1, t2)) = ({n1,n3}, {n3,n4}). Again a
similar scenario results from reestablishing a previously bro-
ken link.

Finally, in Figure 1(d) a node defect is depicted. As node
n4 is not available any longer, a new task binding βt for task

t2 is mandatory. Moreover, changing the task binding im-
plies the recalculation of the communication binding βc.
The ReCoNet given in Figure 1(d) is given as follows:
the task graph gt with Vt = {t1, t2} and Et = {(t1, t2)},
the architecture graph consisting of Va = {n1,n2,n3} and
Ea={{n1, n2}, {n1,n3}, {n2,n3}}, the task binding βt =
{(t1,n1), (t2,n2)} and communication binding βc = {((t1,
t2), ({n1,n2}))}.

From these scenarios we conclude that a ReCoNet given
by a task graph gt, an architecture graph ga, the task bind-
ing βt, and the communication binding βc might change or
might be changed over time, that is, gt = gt(τ), ga = ga(τ),
βt = βt(τ), and βc = βc(τ), where τ ∈ R+

0 denotes the ac-
tual time. In the following, we assume that a change in the
application given by the task graph as well as a change in the
architecture graph is indicated by an event e. Appropriately
reacting to these events e is a feature of adaptive and fault
tolerant systems.

The basic factors of innovation of a ReCoNet stem from
(i) dynamic rerouting, (ii) hardware and software task mi-
gration, (iii) hardware/software morphing, and (iv) online
partitioning. These methods permit solving the problem of
hardware/software codesign online, that is, at runtime. Note
that this is only possible due to the availability of dynamic
and partial hardware reconfiguration. In the following, we
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discuss the most important theoretical aspects of these meth-
ods. In Section 4, we will describe the basic methods in more
detail.

3.2. Online partitioning

The goal of online partitioning is to equally distribute the
computational workload in the network. To understand this
particular problem, we have to take a closer look at the no-
tion of task binding βt and communication binding βc. We
therefore have to refine our model. In our model, we distin-
guish a finite number of the so-called message types M. Each
message type m ∈ M corresponds to a communication pro-
tocol in the ReCoNet.

Definition 2 (message type). M denotes a finite set of mes-
sage types mi ∈M.

In a ReCoNet supporting different protocols and band-
widths, it is crucial to distinguish different demands. Assume
a certain amount of data has to be transferred between two
nodes in the ReCoNet. Between these nodes are two types
of networks, one which is dedicated for data transfer and
supports multicell packages and one which is dedicated for,
for example, sensor values and therefore has a good pay-
load/protocol ratio for one word messages. In such a case,
the data which has to be transferred over two different net-
works would cause a different traffic in each network. Hence,
we associate with each data dependency e ∈ Et the so-called
demand values which represent the required bandwidth when
using a given message type.

Definition 3 (demand). With each pair (ei,mj) ∈ Et × M,
associate a real value di, j ∈ R+

0 (possibly ∞ if the message
type cannot occur) indicating the demand for communica-
tion bandwidth by the two communicating tasks t1, t2 with
ei = (t1, t2).

Example 2. Figure 2 shows a task graph consisting of three
tasks with three demands. While the demand between t1 and
t2 as well as the demand between t1 and t3 can be routed over
all two message types (|M| = 2), the demand between t2 and
t3 can be routed over the network that can transfer message
type m2 only.

On the other hand, the supported bandwidth is modeled
by the so-called capacities to each message type m ∈M asso-
ciated with a link l ∈ Ea in the architecture graph ga.

Definition 4 (capacity). With each pair (li,mj) ∈ Ea × M,
associate a real value ci, j ∈ R+

0 (possibly 0, if the message type
cannot be routed over li) indicating the capacity on a link li
for message type mj .

In the following, we assume that for each link li ∈ Ea
exactly one capacity ci is greater than 0.

Example 3. Figure 2 shows a ReCoNet consisting of four
nodes and four links. While {n1,n3} and {n3,n4} can
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10
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Figure 2: Demands are associated with pairs of data dependencies
and message types while capacities are associated with pairs of links
and message types.

transfer the message type m1, {n2,n3} and {n2,n4} can
handle message type m2. As the data dependency (t1, t3) is
bound to path ({n1,n3}, {n3,n2}), node n3 acts as a gate-
way. The gateway converts a message of type m1 to a message
of type m2. Note that only capacities with c > 0 and demands
with d <∞ are shown in this figure. In our model, we assign
exactly one capacity with c > 0 to each communication link
l ∈ Ea in the architecture graph ga and at least one demand
with d <∞ to the data dependencies e ∈ Et in the task graph
gt .

Depending on the type of capacity, a demand of the cor-
responding type can be routed over such an architecture
graph link. With this model refinement of a ReCoNet, it is
possible to limit the routing possibilities, and moreover, to
assign different demands to one problem graph edge.

Beside the communication, tasks have certain properties
which are of most importance in embedded systems. These
can be either soft or hard, either periodic or sporadic, have
different arrival times, different workloads, and other con-
straints, see, for example, [26]. For online partitioning a pre-
cise definition of the workload is required which is known to
be a complex topic. As we are facing dynamically and par-
tially reconfigurable architectures, we have to consider two
types of workload, hardware workload and software workload,
which are defined as follows.

Definition 5 (software workload). The software workload
wS(t,n) on node n produced by task t implemented in soft-
ware is the fraction of execution time to its period.

This definition can be used for independent periodic and
preemptable tasks. Buttazzo [26] proposed a load definition
where the load is determined dynamically during runtime.
The treatment of such definitions in our algorithm is a matter
of future work.

Definition 6 (hardware workload). The hardware workload
wH(t,n) on node n produced by task t is defined as a frac-
tion of the required area and maximal available area, respec-
tively, configurable logic elements in case of FPGA imple-
mentations.



Thilo Streichert et al. 5

As a task t bound to node n, that is, (t,n) ∈ βt, can be
implemented partially in hardware and partially in software,
different implementations might exist.

Definition 7 (workload). The workload wi(t,n) on node n
produced by the ith implementation of task t is a pair
wi(t,n) = (wH

i (t,n),wS
i (t,n)), where wH

i (t,n) (wS
i (t,n)) de-

notes the hardware workload (software workload) on node n
produced by the ith implementation of task t.

The overall hardware/software workload on a node n
in the network is the sum of all workloads of the tith im-
plementation of tasks bound to this node, that is, w(n) =∑

(t,n)∈βt wti(t,n). Here, we assume constant workload de-
mands, that is, for all t ∈ T ,wi(t,n) = wi(t).

With these definitions we can define the task of online
partitioning formally.

Definition 8 (online partitioning). The task of online parti-
tioning solves the following multiobjective combinatorial op-
timization problem at runtime:

min

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

max
(
Δn(wH(n)

)
,Δn

(
wS(n)

))

∣
∣
∣
∣
∣

∑

n

wH(n)−
∑

n

wS(n)

∣
∣
∣
∣
∣

∑

n

wH(n) + wS(n)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (1)

such that

wH(n),wS(n) ≤ 1,

βt is a feasible task binding,

βc is a feasible communication binding.

(2)

The first objective describes the workload balance in
the network. With this objective to be minimized, the
load in the network is balanced between the nodes, where
hardware and software loads are treated separately with
Δn(wH(n))=maxn(wH(n))−minn(wH(n)) and Δn(wS(n))=
maxn(wS(n))−minn(wS(n)).

The second objective balances the load between hard-
ware and software. With this strategy, there will always be a
good load reserve on each active node which is important for
achieving fast repair times in case of unknown future node
or link failures.

The third objective reduces the total load in the network.
Finally, the constraints imposed on the solutions guarantee
that not more than 100% workload can be assigned to a sin-
gle node. The two feasibility requirements will be discussed
in more detail next.

A feasible binding guarantees that communications de-
manded by the problem graph can be established in the allo-
cated architecture. This is an important property in explicit
modeling of communication.

Definition 9 (feasible task binding). Given a task graph gt and
an architecture graph ga, a feasible task binding βt is an as-
signment of tasks t ∈ Vt to nodes n ∈ Va that satisfies the
following requirements:

(i) each task t ∈ Vt is assigned to exactly one node n ∈
Va, that is, for all t ∈ Vt, |{(t,n) ∈ βt | n ∈ Va}| = 1;

(ii) for each data dependency e ∈ (ti, t j) ∈ Et with
(ti,ni), (t j ,nj) ∈ βt a path p from ni to nj exists.

This definition differs from the concepts of feasible bind-
ing presented in [27] in a way that communicating processes
require a path in the architecture graph and not a direct link
for establishing this communication. This way, we are able
to consider networked embedded systems. However, consid-
ering multihop communication, we have to regard the ca-
pacity of connections and data demands of communication.
This step will be named communication binding in the fol-
lowing.

Definition 10 (feasible communication binding). The task of
communication binding can be expressed with the following
ILP formulation. Define a binary variable with

xi, j =
⎧
⎪⎨

⎪⎩

1 data dependency ei is bound on link l j ,

0 else,
(3)

and a mapping vector −→mi = (mi,1, . . . ,mi,|Va|) for each data
dependency ei = (tk, t j) with the elements

mi,l =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if (tk,nl) ∈ βt,

−1 if (t j ,nl) ∈ βt,

0 else.

(4)

Then, the following two kinds of constraints exist.

(i) For all i = 1, . . . , |Et|,C · −→xi = −→mi, with C being the
incidence matrix of the architecture graph and −→xi =
(xi, j , . . . , xi,|Ea|)T .
This constraint literally means that all incoming and
outgoing demands of a node have to be equal. If a
demand producing or consuming process is mapped
onto an architecture graph node, the sum of incoming
demands differs from the sum of outgoing demands.

(ii) The second constraint restricts the sum of demands
di, j bound onto a link l j to be less than or equal to the
edge’s capacity cj , where di, j is the demand of the data

dependency ei. For all j = 1, . . . , |Ea|,
∑|Et|

i=1 di, j · xi, j ≤
cj .

The objective of this ILP formulation is to minimize the total
flow in the network: min(

∑|Et|
i=1

∑|Ea|
j=1 di, j · xi, j). A solution to

this ILP assigns data dependencies e in the task graph gt to
paths p in the architecture graph ga. Such a solution is called
a feasible communication binding βc.



6 EURASIP Journal on Embedded Systems

ZS

TS

TS�1

Z

ZM
TH

TH�1

ZH

Figure 3: Hardware/software morphing is only possible in the
morph states ZM ⊆ Z. These states permit a bijective mapping of
refined states (ZS and ZH) of task t to Z.

3.3. Task migration, task morphing, and
replica binding

In order to allow online partitioning, it is mandatory to sup-
port the migration and the morphing of tasks in a ReCoNet.
Note that this is only possible by using dynamically and par-
tially reconfigurable hardware.

A possible implementation to migrate a task t ∈ Vt

bound to node n ∈ Va to another node n′ ∈ Va with n �= n′

is by duplicating t on node n′ and removing t from n, that
is, βt ← βt\{(t,n)} ∪ {(t,n′)}. The duplication of a task t
requires two steps: first, the implementation of t has to be in-
stantiated on node n′ and, second, the current context C(t)
of t has to be copied to the new location.

In hardware/software morphing an additional step, the
transformation of the context CH(t) for a hardware imple-
mentation of t to an appropriate context CS(t) for the soft-
ware implementation of t or vice versa, is needed. As a basis
for hardware/software morphing, a task t ∈ Vt is modeled by
a deterministic finite state machine m.

Definition 11. A finite state machine (FSM) m is a 6-tuple
(I ,O, S, δ,ω, s0), where I denotes the finite set of inputs, O
denotes the finite set of outputs, S denotes the finite set
of states, δ : S × I → S is the state transition function,
ω : S × I → O is the output function, and s0 is the initial
state.

The state space of the finite state machine m is described
by the set Z ⊆ E × O × S. During the software build process
and the hardware design phase, state representations, ZS for
software and ZH for hardware, are generated by transforma-
tions TS and TH , see Figure 3, for instance. After the refine-
ment of Z in ZS or ZH it might be that the states z ∈ Z do not
exist in ZS or ZH . Therefore, hardware/software morphing is
only possible in equivalent states existing in both, ZH and
ZS. For these states, the inverse transformation TH−1

, respec-
tively, TS−1

must exist. The states will be called morph states
ZM ⊆ Z in the following (see Figure 3). Note that a morph
state is part of the context C(t) of a task t.

In summary, both task migration and hardware/software
morphing are based on the idea of context saving or check-
pointing, respectively. In order to reduce recovery times, we
create one replica t′ for each task t ∈ Vt in the ReCoNet. In

case of task migration, the context C(t) of task t can be trans-
ferred to the replica t′ and t′ can be activated, assuming that
the replica is bound to the node n′ the task t should be mi-
grated to. Thus, our ReCoNet model is extended towards a
so-called replica task graph g′t .

Definition 12 (replica task graph). Given a task graph gt =
(Vt,Et), the corresponding replica task graph g′t = (V ′t ,E′t) is
constructed by V ′t = Vt ∪ Ṽt and E′t = Et ∪ Ẽt. Ṽt denotes
the set of replica tasks, that is, for all t ∈ Vt there exists a
unique t′ ∈ Ṽt and |Vt| = |Ṽt|. Ẽt denotes the set of edges
representing data dependencies (t, t′) resulting from sending
checkpoints from a task t to its corresponding replica t′, that
is, Ẽt ⊂ Vt × Ṽt .

The replica task graph g′t consists of the task graph gt, the
replica tasks Ṽt, and additional data dependencies Ẽt which
result from sending checkpoints from tasks to their replica.
With the definition of the replica task graph g′t , we have to
rethink the concept of online partitioning. In particular, the
definition of a feasible task binding βt must be adapted.

Definition 13 (feasible (replica) task binding). Given a
replica task graph g′t and a function r : Vt �→ Ṽt that assigns
a unique replica task t′ ∈ Ṽt to its task t ∈ Vt . A feasible
replica task binding is a feasible task binding βt as defined in
Definition 9 with the constraint that

∀t ∈ Vt ,βt(t) �= βt
(
r(t)

)
. (5)

Hence, a task t and its corresponding replica r(t) must
not be bound onto the same node n ∈ Va. In the follow-
ing, we use the term feasible task binding in terms of feasible
replica task binding.

3.4. Hardware checkpointing

Checkpointing mechanisms are integrated for task migration
as well as morphing to save and periodically update the con-
text of a task. In [16], checkpoints are defined to be consistent
(fault-free) states of each task’s data. In case of a fault or if the
tasks’ data are inconsistent, each task restarts its execution
from the last consistent state (checkpoint). This procedure
is called rollback. All results computed until this last check-
point will not be lost and a distributed computation can be
resumed. As mentioned above, several tasks have to go back
to one checkpoint if they depend on each other. Therefore,
we define checkpoint groups.

Definition 14 (checkpoint group). A checkpoint group is a
set of tasks with data dependencies. Within such a group, one
leader exists which controls the checkpointing.

For each checkpoint group the following premise holds:
(1) each member of a checkpoint group knows the whole
group, (2) the leader of a checkpoint group is not necessar-
ily known to all the others in a group, and (3) overlapping
checkpoint groups do not exist. As the developer knows the
structure of the application, that is, the task graph gt at design
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time, checkpoint groups can be built a priori. Thus, proto-
cols for establishing checkpoint groups during runtime are
not considered in this case.

Model of Consistency

Assume a task graph gt with a set of tasks Vt = {t0, t1, t2}
running on different nodes in a ReCoNet. The first task t0
produces messages and sends them to the next task t1 which
performs some computation on the message’s content and
sends them further to task t2. Our communication model is
based on message queues for the intertask communication.
Due to rerouting mechanisms, for example, in case of a link
defect, it is possible that messages were sent over different
links. Hence, the order of messages in general cannot be as-
sured to stay the same.

But if messages arrive at a task t j , we have to ensure that
these were processed in the same order they have been cre-
ated by task t j−1. As a consequence, we assign a consecutive
identifier i to every generated message. Let us assume that
the last processed message by a task t j was mi produced at
task t j−1, then task t j has to process message mi+1 next. If
the message order arranged by task t j−1 has changed during
communication this will be recognized at task t j by an iden-
tifier larger than the one to be processed next. In this case
all messages mi+k, for all k > 1 will be temporarily stored in
the so-called local data set of task t j to be processed later in
correct order.

If task t j receives a message to store a checkpoint by the
leader of a checkpoint group it will stop to process the next
messages and consequently t j will stop to produce new out-
put messages for node t j+1. In the following, all tasks of this
checkpoint group will start to move incoming messages into
their local data set. In addition, all tasks of the checkpoint
group will store their internal states on the local data set. As
a consequence, all tasks of the checkpoint group will reach a
consistent state.

Hence, we define a checkpoint as follows.

Definition 15 (checkpoint). A checkpoint is a set of local data
sets. It can be produced if all tasks inside a checkpoint group
are in a consistent state. This is when (i) all message pro-
ducing tasks are stopped and (ii) after all message queues are
empty.

The checkpoint is stored in a distributed manner in the
local data sets of all tasks belonging to their checkpoint
group. All tasks t ∈ Vt of the task graph gt will have to copy
their current local data set to their corresponding replica task
t′ ∈ V ′t of the replica task graph g′t . If a node hosting a task t
fails, the corresponding replica task t0 takes over the work of t
and all tasks of the checkpoint group will perform a rollback
by restoring their last checkpoint.

Hardware checkpointing

As we model tasks’ behavior by finite state machines and
we have seen how to handle input and output data to keep
checkpoints consistent, we are now able to present a new

model for hardware checkpointing. An FSM m that allows
for saving and restoring a checkpoint can also be modeled by
an FSM cm. Subsequently, we denote cm as checkpoint FSM
or for short CFSM. In order to construct a corresponding
CFSM cm for a given FSM m, we have to define a subset of
states Sc ⊆ S that will be used as a checkpoint. Using Sc ⊂ S
might be useful due to optimality reasons. First, we define a
CFSM formally.

Definition 16. Given an FSM m = (I ,O, S, δ,ω, s0) and a set
of checkpoints Sc ⊆ S, the corresponding checkpoint FSM
(CFSM) is an FSM cm = (I′,O′, S′, δ′,ω′, s′0), where

I′ = I × Sc × Isave × Irestore with Isave = Irestore = {0, 1},
O′ = O × Sc, S′ = S× Sc.

(6)

In the following, it is assumed that the current state is given
by (s, s′) ∈ S′. The current input is denoted by i′. The state
transition function δ′ : S′ × I′ → S′ is given as

δ′ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
δ(s, i), s′

)
if i′ = (i,−, 0, 0),

(
δ(s, i), s

)
if i′ = (i,−, 1, 0)∧ s ∈ Sc,

(
δ(s, i), s′

)
if i′ = (i,−, 1, 0)∧ s /∈ Sc,

(
δ
(
ic, i
)
, s′
)

if i′ = (i, ic, 0, 1
)
,

(
δ
(
ic, i
)
, s
)

if i′ = (i, ic, 1, 1
)∧ s ∈ Sc,

(
δ(s, i), s′

)
if i′ = (i, ic, 1, 1

)∧ s /∈ Sc.

(7)

The output function ω′ is defined as

ω′ =
⎧
⎨

⎩

(
ω(s, i), s′

)
if i′ = (i,−,−, 0),

(
ω
(
ic, i
)
, s′
)

if i′ = (i, ic,−, 1
)
.

(8)

Finally, s′0 = (s0, s0).

Hence, a CFSM cm can be derived from a given FSM m
and the set of checkpoints Sc. The new input to cm is the orig-
inal input i and additionally an optional checkpoint to be re-
stored as well as two control signals isave and irestore. These ad-
ditional signals are used in the state transition function δ′. In
case of isave = irestore = 0, cm acts like m. On the other hand,
we can restore a checkpoint sc ∈ Sc if irestore = 1 and using sc
as additional input, that is, ic = sc. In this case, ic is treated as
current state, and the next state is determined by δ(ic, i). It is
also possible to save a checkpoint by setting isave = 1. In this
case, the current state s is set to the latest saved checkpoint.
Therefore, the state space of cm is given by the current state
and the latest saved checkpoint (S× Sc). Note that it is possi-
ble to swap two checkpoints by setting isave = irestore = 1. The
output function is extended to output also the latest stored
checkpoint s. The output function is given by the original
output function ω and s′ as long as no checkpoint should be
restored. In case of a restore (irestore = 1), the output depends
on the restored checkpoint ic and the input i. The initial state
s′0 of cm is the initial state s0 of m where s0 is used as latest
saved checkpoint, that is, s′0 = (s0, s0).
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Figure 4: (a) FSM of a modulo-4-counter. (b) Corresponding
CFSM for Sc = {0, 2}, that is, only in states 0 and 2 saving of the
checkpoint is permitted. The state space is given by the actual state
and the latest saved checkpoint.

Example 4. Figure 4(a) shows a modulo-4-counter. Its FSM
m is given by I = ∅,O = S = {0, 1, 2, 3}, δ(s) = (s + 1)%4,
ω(s) = s, and s0 = 0. The corresponding CFSM cm for
Sc = {0, 2} is shown in Figure 4. For readability reasons, we
have omitted the swap state transitions. The state space has
been doubled due to the two possible checkpoints. To be pre-
cise, there are two copies of m, one representing s′ = 0 to
be the latest stored checkpoint and one representing s′ = 2
being the latest stored checkpoint. We can see that there ex-
ist two state transitions connecting these copied FSMs when
saving a checkpoint, that is, ((2, 0), (3, 2)) and ((0, 2), (1, 0)).
Of course it is possible to save the checkpoints in the states
(0, 0) and (2, 2) as well. But the resulting state transitions do
not differ from the normal mode transitions. The restoring
of a checkpoint results in additional state transitions.

4. ARCHITECTURE AND OPERATING SYSTEM
INFRASTRUCTURE

All previously mentioned mechanisms for establishing a
fault-tolerant and self-adaptive reconfigurable network have
to be integrated in an OS infrastructure which is shown
in Figure 5. While the reconfigurable network forms the
physical layer consisting of reconfigurable nodes and com-
munication links, the top layer represents the application
that will be dynamically bound on the physical layer. This
binding of tasks to resources is determined by an online
partitioning approach that requires three main mechanisms:

Application

Dynamic hardware/software partitioning

Dynamic rerouting

Hardware/software
task migration

Hardware/software
morphing

Hardware/software checkpointing

Basic network services

Local operating system

Dynamic hardware
placement

Dynamic software
scheduling

Reconfigurable network

Figure 5: Layers of a fault-tolerant and self-adaptive network. In
order to abstract from the hardware, a local operating system runs
on each node. On top of this local OS, basic network tasks are de-
fined and used by the application to establish the fault-tolerant and
self-adaptive reconfigurable network.

(1) dynamic rerouting, (2) hardware/software task migra-
tion, and (3) hardware/software morphing. Note that the dy-
namic rerouting becomes more complex because messages
will be sent between tasks that can be hosted by different
nodes. The service provided by task migration mechanisms
are required for moving tasks from one node to another
while the hardware/software morphing allows for a dynamic
binding of tasks to either reconfigurable hardware resources
or a CPU. The task migration and morphing mechanisms re-
quire in turn an efficient hardware/software checkpointing
such that states of tasks will not get lost. Basic network ser-
vices for addressing nodes, detecting link failures, and send-
ing/receiving messages are discussed in [28]. In connection
with the local operating system the hardware reconfigura-
tion management has to be considered. Recent publications
[3, 29, 30] have presented algorithms for placing hardware
functionality on a reconfigurable device.

4.1. Online partitioning

The binding of tasks to nodes is determined by a so-called
online hardware/software partitioning algorithm which has
to (1) run in a distributed manner for fault-tolerance rea-
sons, (2) work with local information, and (3) improve the
binding concerning objectives presented in the following. In
order to determine a binding of processes to resources, we
will introduce a two-step approach as shown in Figure 6. The
first step performs a fast repair that reestablishes the func-
tionality and the second step tries to optimize the binding of
tasks to nodes such that the system can react upon a changed
resource allocation and newly arriving tasks.

Fast repair

Two of the three scenarios presented in Figure 1 will be
treated during this phase. In case of a newly arriving task the
decision of task binding is very easy. Here, we use discrete
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Figure 6: Phases of the two-step approach: while the fast repair step reestablishes functionality under timing constraints, the optimization
phase aims on increasing fault tolerance.

diffusion techniques that will be explained later. Due to the
behavior of these techniques, the load of all nodes is almost
equally balanced. Hence, the new task can be bound on an
arbitrary node.

In the third scenario a node defect occurs. So, tasks
bound onto this node will be lost and replicas will take over
the functionality. A replicated task t′ will be hosted on a dif-
ferent node than its main task t ∈ Vt. Periodically, a repli-
cated task receives a checkpoint by the main task and checks
whether the main task is alive. If the main task is lost, the
replicated task becomes a main task, restores the last check-
point, and creates a replica on one node in its neighborhood.
The main task checks either if its replicated task is still alive.
If this is not the case, a replica will be created in the neigh-
borhood again.

Bipartitioning

The applied heuristic for local bipartitioning first determines
the load ratio between a hardware and a software implemen-
tation for each task ti ∈ Vt , that is, wH(ti)/wS(ti). According
to this ratio, the algorithm selects one task and implements
it either in hardware or software. If the hardware load is less
than the software load, the algorithm selects a task which will
be implemented in hardware, and the other way round. Due
to the competing objectives that (a) the load on each node’s
hardware and software resources should be balanced and (b)
the total load should be minimized, it is possible that tasks
are assigned, for example, to software although they would
be better assigned to hardware resources. These tasks which
are suboptimally assigned to a resource on one node will be
migrated to another node at first during the diffusion phase.

Discrete diffusion

While bipartitioning assigns tasks to either hardware or
software resources on one node, a decentralized discrete
diffusion algorithm migrates tasks between nodes, that is,
changing the task binding βt. Characteristic to the class of

diffusion algorithms, first introduced by Cybenko [31] is that
iteratively each node is allowed to move any size of load to
each of its neighbors. The quality of such an algorithm is
measured in terms of the number of iterations that are re-
quired in order to achieve a balanced state and in terms of
amount of load moved over the edges of the graph.

Definition 17 (local iterative diffusion algorithm). A local it-
erative load balancing algorithm performs iterations on the
nodes of ga determining load exchanges between adjacent
nodes. On each node ni ∈ Va, the following iteration is per-
formed:

yk−1
c = α

(
wk−1
i −wk−1

j

) ∀c = {ni,nj
} ∈ Ea,

xkc = xk−1
c + yk−1

c ∀c = {ni,nj
} ∈ Ea,

wk
i = wk−1

i −
∑

c={ni ,nj}∈Ea
yk−1
c .

(9)

In (9), wi denotes the total load on node ni, y is the load to be
transferred on a channel c, and x is the total transferred load
during the optimization phase. Finally, k denotes the integer
iteration index.

In order to apply this diffusion algorithm in applications
where we cannot migrate a real-valued part of a task from
one node to another, an extension is introduced. With this
extension, we have to overcome two problems.

(1) First of all, it is advisable not to split one process and
distribute it to multiple nodes.

(2) Since the diffusion algorithm is an alternating iterative
balancing scheme, it could occur that negative loads
are assigned to computational nodes.

In our approach [32], we first determine the real-valued con-
tinuous flow on all edges to the neighboring nodes. Then,
the node tries to fulfill this real-valued continuous flow for
each incident edge, by sending or receiving tasks, respectively.
By applying this strategy, we have shown theoretically and
by experiment [32, 33] that the discrete diffusion algorithm
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Figure 7: Presented is the distance between the solutions of our
distributed online hardware/software partitioning approach and an
algorithm with global knowledge. In (a) tasks are bound to network
nodes such that each node has a certain load. In (b) a certain num-
ber of tasks is bound to each node and each task is implemented in
the optimal implementation style.

converges within provable error bounds and as fast as its con-
tinuous counterpart.

In Figure 7 the experimental results are shown. There,
our distributed approach has been evaluated by comparing it
with a centralized methodology that possesses global knowl-
edge. The centralized methodology is based on evolution-
ary algorithms and determines a set R of reference solutions
and calculates the shortest normalized distance d(s) from the
solution s found by the online algorithm to any reference

solution r ∈ R:

d(s) = min
r∈R

{∣
∣
∣
∣
s1 − r1

rmax
1

∣
∣
∣
∣ +

∣
∣
∣
∣
s2 − r2

rmax
2

∣
∣
∣
∣

}

. (10)

In the first experiment, we are starting from a network which
is in an optimal state such that all tasks are implemented op-
timally according to all objectives. Now, we assume that new
software tasks arrive on one node. Starting from this state,
Figure 7(a) shows how the algorithm performs for different
load values. In the second experiment, the initial binding
of tasks and load sizes were determined randomly. For this
case, which is comparable to an initialization phase of a net-
work, we generated process sets with 10 to 1000 processes,
see Figure 7(b). In this figure, we can clearly see that the al-
gorithm improves the distribution of tasks already with the
first iteration leading to the best improvement. We can see in
Figure 7 that the failure of one node causes a high normal-
ized error. Interestingly, the algorithm finds global optima
but due to local information our online algorithm cannot de-
cide when it finds a global optimum.

4.2. Hardware/software task migration

In case of software migration, two approaches can be con-
sidered. (1) Each node in the network contains all software
binaries, but executes only the assigned tasks, or (2) the bi-
naries are transferred over the network. Note that the second
alternative requires that binaries are relocatable in the mem-
ory and only relative branches are allowed. With these con-
straints, an operating system infrastructure can be kept tiny.
Besides software functionality, it is desired to migrate func-
tionality implemented in hardware between nodes in the re-
configurable network. Similar to the two approaches for soft-
ware migration, two concepts for hardware migration exist.
(1) Each node in the network contains all hardware modules
preloaded on the reconfigurable device, or (2) FPGAs sup-
porting partial runtime reconfiguration are required. Com-
parable to location-independent software binaries, we de-
mand that the configuration data is relocatable, too. In [34],
this has been shown for Xilinx Virtex E devices and in [35],
respectively, for Virtex 2 devices. Both approaches modify the
address information inside the configuration data according
to the desired resource location.

4.3. Hardware/software morphing

Hardware/software morphing is required to dynamically as-
sign tasks either to hardware or software resources on a node.
Naturally, not all tasks can be morphed from hardware to
software or vice versa, for example, tasks which drive or read
I/O-pins. But those tasks that are migratable need to fulfill
some restrictions as presented in Section 3.3.

Basically, the morph process consists of three steps. At
first, the state of a task has to be saved by taking a check-
point in a morph state. Then, the state encoding has to be
transformed such that the task can start in the transformed
state with its new implementation style in the last step.
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A requirement to morphable tasks is that they have to be
equivalent such that the surrounding system does not rec-
ognize the implementation style of the morphable task. Also
the transformation depends heavily on the implementation
which especially leads to problems when transforming data
types. While it is possible to represent numbers in hardware
with almost arbitrary word width, current processors per-
form computations on 16 bit or 32 bit wide words. Thus,
the numbers have to be extended or truncated. This modi-
fication causes again difficulties if numbers are presented in
different representations. The representation which can ei-
ther be one’s complements, two’s complement, fixed point,
or floating point numbers needs to be transformed, too.
Additional complexity arises if functionality requires a se-
quential computation in software and a parallel computation
in hardware. Due to these implementation-dependent con-
straints, we currently support an automated morph-function
generation only for bit vectors in the hardware that are in-
terpreted as integers in the software. The designer needs to
give information about the possible morph states and to-
gether with the help of the automated insertion of check-
points into hardware/software tasks, the morphing becomes
possible.

4.4. Hardware checkpointing

In Section 3, we have shown how to model checkpoints for
tasks modeled by FSMs. Here, we are introducing and an-
alyzing the overhead of three possibilities for extracting the
state of a hardware module.

(i) Scan chain. As shown in Figure 8(a), an extra scan
multiplexer in front of each flip-flop in the circuit
switches between a regular execution mode and a scan
mode. In the latter one, the registers are linked together
to form a shift register chain. If the output of the regis-
ter chain is connected to the input forming a ring shift,
the module can continue regular execution immedi-
ately after the checkpoint has been read. In the case of
a rollback, the last error-free state is shifted into the
module.

(ii) Scan chain with shadow registers. Each flip-flop of the
original circuit is duplicated and connected to a chain,
see Figure 8(b). The multiplexer in front of the main
flip flop can either propagate the value of the combina-
torial circuit or the value of the corresponding shadow
register. Hence, it is possible to store, restore, or swap
a checkpoint within one single clock cycle.

(iii) Memory mapping. As shown in Figure 8(c), each flip-
flop is directly accessible by the CPU via an address and
a data bus. Depending on the data bus width several
flip-flops can be grouped together to one word.

All three state extraction architectures can be used for
automatically modifying a given RTL design. But due to
the optimization during the synthesis process from an RTL
to a netlist description, it is advantageous to integrate the
hardware checkpointing techniques on netlist level. Starting
from the netlist, we can directly identify flip-flops by the
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Figure 8: Hardware checkpointing methodologies: (a) the flip-flops
are connected to form a scan chain, (b) each flip flop is replicated
with a so-called shadow register which are connected to a scan chain
again, (c) a set of flip-flops can be directly accessed via an address
and a data port of a CPU.

instantiated primitives. These primitives are replaced with
primitives for dedicated extended flip-flops that support sav-
ing and restoring a checkpoint, see Figure 9. Finally, the con-
nections between the replaced flip-flops and the interface
have to be determined and integrated.

In our experiments, we used the Synopsis design com-
piler to generate an EDIF netlist consisting of GTECH prim-
itives. The identified GTECH flip-flops are replaced by our
extended flip-flops allowing for hardware checkpointing.
For our approach, we evaluated the different state extrac-
tion mechanisms discussed above according to the following
properties.

(i) Checkpoint hardware overhead. The checkpoint hard-
ware overhead H specifies the amount of additional
resources required by a certain checkpointing mecha-
nism. Here, we distinguish HL and HF being the check-
point hardware overhead in terms of look up tables
and flip-flops, respectively.

(ii) Checkpoint performance reduction. The checkpoint per-
formance reduction R specifies the reduction of the
maximal achievable clock frequency. As additional
logic needs to be included into the original control and
data paths, routing distances will slightly increase lead-
ing to a reduced clock frequency of the design.

(iii) Checkpoint overhead. The checkpoint overhead C spec-
ifies the amount of time a module is interrupted when
storing a checkpoint which leads to an increase in the
execution time.



12 EURASIP Journal on Embedded Systems

Design entry

HDL-source

Front-end synthesis
(Synopsis design compiler)

GTECH-netlist

State access
Register

description file

Interface template
(VHDL) GTECH-netlist

GTECH�-library
(VHDL)

Initial system
(VHDL)

Back-end synthesis
and place & route

(Altera Quartus, Xilinx ISE)

Config. bitstream

Figure 9: Design flow for integrating hardware checkpoints. Starting from the netlist, the StateAccess tool replaces flip-flops in the design
by extended flip-flops that support saving and restoring of checkpoints.

(iv) Checkpoint latency. The checkpoint latency L specifies
the amount of time required until the complete check-
point data has arrived at the node hosting the specific
replica task.

Table 1 presents measured values of a DES cryptographic
hardware module from [36] that was automatically modified
for checkpointing and tested on an Altera NIOS2 system. The
table points out that each state extraction strategy is optimal
in the sense of one of the defined properties. The shadow
scan chain method leads in the case of high checkpoint rates
to a higher throughput by the cost of almost doubling of
the required logic resources. The simple scan chain approach
demonstrates that it is possible to enhance a hardware mod-
ule to be capable of checkpointing with an overhead of about
20% as compared to the original module.

5. IMPLEMENTATION AND APPLICATION

The previously described methods have been implemented
on the basis of a network consisting of four FPGA-based
boards with a CPU and configurable logic resources. As
an example, we implemented a driver assistant system that
warns the driver in case of an unintended lane change and
is implemented in a distributed manner in the network.
As shown in Figure 10, a camera is connected to node n4.
The camera’s video stream is then processed in basically
three steps: (a) preprocessing, (b) segmentation, and (c) lane
detection. Each step is implemented as one task. The result
of the lane detection is evaluated in a control task that gets in

Table 1: Results obtained by our approach by implementing the
different state extraction mechanisms: scan chain, scan chain with
shadow registers, and memory mapping.

#LUTs/HL #Flip-Flops/HF

Original DES 2015/100% 984/100%

Scan chain 2414/120% 1138/116%

Shadow chain 3937/195% 2023/205%

Memory mapped 2851/141% 1026/105%

Fmax [MHz] / P C L

Original DES 116/100% — —

Scan chain 110/95% 10354 24979

Shadow chain 99/85% 0 16813

Memory mapped 107/92% 1306 16931

addition the present state of the drop arm switch. If the driver
changes the lane without switching on the correct turn signal,
an acoustic signal will warn the driver of an unintended lane
change.

5.1. Architecture and local OS

As depicted in Figure 10, our prototype implementation of
a ReCoNet consists of four fully connected FPGA boards.
Each node is configured with a NIOS-II softcore CPU [37]
running MicroC/OS-II [38] as a local operating system. The
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Figure 10: Schematic composition of a ReCoNet demonstrator: on the basis of four connected FPGA boards, we implemented a distributed
operating system infrastructure which executes a lane detection algorithm. This application warns the driver acoustically in case of an
unintended lane change.

local OS supports multitasking through preemptive schedul-
ing and has been extended to a message passing system. On
top of this extended MicroC/OS-II, we implemented the dif-
ferent layers as depicted in Figure 5. In detail, these are func-
tions for checkpointing, task migration, task morphing and
online hardware/software partitioning.

As Altera FPGAs do not support dynamic partial hard-
ware reconfiguration, we configured each node with a set of
hardware modules. This allows us to emulate the dynamic
reconfiguration processes by selectively enabling hardware
modules.

Although the MicroC/OS-II has no runtime system that
permits dynamic task creation, we enabled the software task
migration by transferring binaries to other nodes and linking
OS functions to the same address such that tasks can access
these functions on each node. This methodology reduces the
amount of transferred binary data drastically compared to
the alternative that the OS functions are transferred either.
Also, this methodology avoids implementing a complex run-
time system and the operating system keeps tiny.

5.2. Communication

For fault-tolerance reasons, the ReCoNet is based on a point-
to-point (P2P) communication protocol [28]. As compared
to a bus, we will produce some overhead by the routing
on the one side while omitting the problem of bus arbitra-
tion.

The routing allows us to deal with link failures by chang-
ing the routing tables in such a way that data can be sent via
alternative paths. Besides the fault tolerance, P2P networks
have the advantage of an extremely high total bandwidth. In
the present implementation, we set the physical data transfer
rate of a single link to 12.5 Mbps and measured a maximum
throughput of 700 kbps allowing even to transfer the video
stream in our driver assistant application.

Each node stores a so-called task resolution table that al-
lows a mapping from the task layer to the network layer,
where the communication is performed with respect to the
given node addresses. The task resolution is the key function
for the task-2-task communication, allowing tasks to com-
municate among themselves regardless of there present host-
ing node. In the case of links, we have to distinguish between
intermediate and long term failures. A single bit flip, for ex-
ample, is an intermediate failure that will not demand ad-
ditional care with respect to the routing, while a link down
should be recognized as fast as possible in order to determine
a new routes. As the link state is recognized in the transceiver
ports of our implementation, we chose the advantageous
variant to perform the line detection in hardware.

6. CONCLUSIONS

In this article, we presented concepts of self-adaptive net-
worked embedded systems called ReCoNets. The particular-
ities and novelties of such self-balancing and self-healing ar-
chitectures stem from three central algorithmic innovations
that have been proposed here for the first time and verified
on a real platform for real applications, namely;

(i) fully decentralized online partitioning algorithms for
hardware and software tasks;

(ii) techniques and overhead analysis for migration of
hardware and software tasks between nodes in a net-
work; and finally

(iii) morphing of the implementation style of a task from
hardware to software and vice versa.

Although some of these techniques rely on existing prin-
ciples of fault tolerance such as checkpoint mechanisms, we
believe that their extension and the combination of the above
three mechanisms is an important step towards self-adaptive
and organic computing networks.
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1. INTRODUCTION

System on chip are increasingly becoming complex to design,
test, and fabricate. SoC design methodologies make intensive
use of intellectual properties (IPs) [1] to reduce the design
cycle time and meet stringent time to market constraints.
However, associated tools still lag behind when addressing
the huge associated design space exposed by the combination
of soft IP. In addition, failure to meet an efficient distribu-
tion in terms of performance, area, and energy consumption
makes the whole design inappropriate. Although this prob-
lem is already hard to solve in the ASIC domain, it is exacer-
bated in the system on programmable chip (SoPC) domain.
SoPC are large scale devices offering abundant resources but
in fixed amount and in fixed location on chip. Implementing
embedded multiprocessors on these devices presents several
advantages, the most important is to be able to quickly eval-
uate various configurations and tune them accordingly. In-
deed, embedded multiprocessor design is highly application-
driven and it is therefore highly advantageous to execute ap-
plications on real prototypes. However, due to the fact that
specific resources are located at fixed positions on these large
chips it is hard not to take into account the important impact
of place and route results on the critical paths and therefore
on the overall performance. In this paper, we address this

multiobjective optimization problem [2] restricted to per-
formance and area through the combination of an efficient
design space exploration (DSE) technique coupled with di-
rect execution on an FPGA board [3]. The direct execution
removes the prohibitive simulation time associated with the
evaluation of embedded multiprocessor systems. A side effect
of this approach is that direct execution requires actual on
chip implementation of the various multiprocessor configu-
rations to be explored which provides actual post synthesis
and place and route area information. The resulting flow is
fully integrated from multiprocessor platform specification
to execution.

The paper is organized as follows. In Section 2, we re-
view previous work. Section 3 describes an example of soft
IP-based multiprocessor and the breadth of the problem as-
sociated with the design of such multiprocessor on a particu-
lar instance of embedded memories optimization. Section 4
presents our approach, MOCDEX, based on multiobjec-
tive evolutionary algorithms (EA) and direct execution. In
Section 5 we describe a case study and validation, while
Section 6 provides exploration results. Section 7 provides
statistical insight in the explored design space and demon-
strates the diversity of multiprocessor configurations ex-
plored during the automatic process. Finally, we conclude in
Section 8 with remarks and directions for future work.
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2. PREVIOUS WORK

The recent emergence of multiprocessors on chip as strong
potential candidates to address performance, energy, and
area constraints for embedded applications has resulted in
the following question: how do we design efficient multi-
processors on chip for a target application? Design automa-
tion tools fail to address this question, while traditional par-
allel computer architectures techniques [4] have not been
exposed to the huge diversity brought by soft IP-based de-
sign methodologies and the strong constraints of embed-
ded systems [5]. Therefore, the design of multiprocessor on
chip is the convergence focus of previously unrelated tech-
niques and as such represents a new problem on how to
establish a close integration between those techniques. It is
then not surprising that few works so far have been devoted
to design methodologies for multiprocessors on chip. In [6]
they present a design flow for the generation of application-
specific multiprocessor architectures. In the flow, architec-
tural parameters are first extracted from a high-level spec-
ification and are used to instantiate architectural compo-
nents such as processors, memory modules, and communi-
cation networks. Cycle accurate cosimulations of the archi-
tectures are used for performance evaluation while all results
in our case are obtained through actual execution and they
do not use design space exploration algorithm. In [7], syn-
thesis of application-specific heterogeneous multiprocessor

architectures using extensible processors is proposed based
on an iterative improvement algorithm implemented in the
context of a commercial design flow. The proposed algo-
rithm is based on cycle count estimation and instruction-
set simulations, and although synthesis results are used, both
architecture and implementation flows are still decoupled.
In [8] they propose an automated exploration framework
for FPGA-based soft multiprocessor systems. Using as in-
put the application graph that describes tasks and commu-
nication links, outputs of the exploration step are a mi-
croarchitecture configuration of processors and communi-
cation channels, a mapping of the application tasks and links
onto the processors and channels of the micro-architecture.
They formulate the exploration problem as an integer lin-
ear problem. The “best design” based on the ILP results is
selected and synthesized to verify performance. This verifi-
cation may fail because routing details are not taken into
account during the exploration process. This approach still
keeps decoupled design automation tools and exploration,
while in our approach design space exploration fully inte-
grates design automation tools since solutions are ranked on
the area results obtained post-synthesis and place and route
and performance results obtained from actual execution on
board. Besides, the problem formulation ignores the arbitra-
tion overhead when computing the communication access
time again due to the static nature of the design space ex-
ploration decoupled from actual execution. As pointed out
by the authors, this can lead to a significant source of errors
when there are a large number of masters on the bus. Finally,
it should be clear that no single “best design” exists in any
multiobjective optimization problem and only a Pareto set
can be obtained. In [9] they present high-level scheduling
and interconnect topology synthesis techniques for embed-
ded multiprocessor system-on-chip that are streamlined for
one or more digital signal processing applications. The pro-
posed interconnect synthesis method utilizes a genetic algo-
rithm (GA) operating in conjunction with a list scheduling
algorithm which produces candidate topology graphs based
on direct physical communication. The proposed algorithm
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is a single objective algorithm, while the algorithm used in
our work is a multiobjective algorithm; and although we use
direct link we optimize also buffering capacities by trading
on-chip memory among embedded processor cache mem-
ories and connection link buffers. To the best of our knowl-
edge our work is the first to fully integrate and therefore close
the gap between design automation tools and architecture
design space exploration technique in a multiobjective con-
straints paradigm with actual execution for all multiproces-
sor on chip configurations explored during the design space
exploration process.

3. SOFT IP-BASED EMBEDDED MULTIPROCESSOR
SYSTEMS

Soft IP-based embedded multiprocessor systems are SoC
fully designed with soft IPs. This includes soft IP proces-
sors, interconnect infrastructure and memories. An example
of such soft IP multiprocessor is described below based on
Xilinx EDK IPs [10].

3.1. MicroBlaze soft IP processor

MicroBlaze soft IP [11] is a 32-bit 3-stage single issue
pipelined Harvard style embedded processor architecture
provided by Xilinx as part of their embedded design tool kit.

Both caches are direct mapped, with 4-word cache lines
allowing configurable cache and tag size and user selectable
cacheable memory area. Data cache uses a write-through
policy. MicroBlaze core configurability extends to functional
unit through user selectable barrel shifter (BS), hardware
multiplier (HWM), hardware divider (HWD), and floating
point unit (FPU). MicroBlaze has neither static nor dynamic
branch prediction unit and supports branches with delay
slots. For its communication purposes, MicroBlaze uses ei-
ther a bus or a direct link. The on-chip peripheral bus (OPB)
is part of IBM CoreConnect bus architecture and allows the
design of complete single processor systems with peripherals
and uses designed hardware accelerators [12, 13]. However,
even for a simple embedded-processor-based multiproces-
sors designs such as MicroBlaze, the OPB bus is not suitable
because of its lack of scalability. Another approach is pro-
vided by “Fast Simplex Link” [14] which allows direct con-
nection between embedded processors through FIFO chan-
nels.

3.2. MicroBlaze fast simplex link

The fast simplex link (FSL) [14] is an IP developed by
Xilinx to achieve a fast unidirectional point-to-point com-
munication between any two components. The FSL link is
implemented as a 32-bit wide FIFO with configurable depth
and width option. The FSL can be either a master or a slave
interface depending upon its use.

MicroBlaze soft embedded processor allows up to 8 mas-
ter and slave FSL interfaces. Basic software drivers are pro-
vided to simplify the use of FSL connection. They consist
of read/write routines and control functions. The read/write

routines can be executed in two different ways: blocking and
nonblocking mechanism.

3.3. IBM interconnect

The IBM interconnect [10] represents a set of IPs used to de-
velop SoC devices. It includes the PLB and OPB bus, a PLB-
OPB bridge, and various peripherals.

3.4. MPSoC platform description

Our FPGA multiprocessor platform consists of four MicroB-
laze processors with instruction and data cache units. These
processors are connected with each other through FSL chan-
nels.

Each MicroBlaze is connected, as shown in Figure 3, to
an OPB bus to use a timer and an interrupt controller for
threads and OS execution. MicroBlaze MB0 is connected to
the OPB bus which is connected to the PCI interface of the
host (WS). This allows the designer to send and receive data
from the host to the multiprocessor system. We implemented
a soft layer of communication in each MicroBlaze which per-
forms send and receive functions of packets. The packets
consist of headers representing the destination and source
addresses and the number of flits in the payload. A worm-
hole routing algorithm was used since it uses less memory,
making it suitable for network on chip communication. As it
can be seen a 4-way multiprocessor has been built based on
the previously described soft IPs.

The implementation of such a soft IP multiprocessor on
FPGA platform requires a variable amount of resources as
each soft IP composing the multiprocessor requires a variable
amount of resources depending on the configuration options
[10]. Table 1 provides an insight on such variability.

Such a soft IP multiprocessor can be easily adapted to
the need of a specific application adapted to a particular
application. However, these systems for best efficiency and
low memory latency require the use of embedded on chip
memories. Unfortunately, embedded memories are scarce
resources for which processors instruction and data cache
memories as well as bus and network on-chip FIFO-based
interfaces will compete. This competition is dominated by
the absolute requirement of efficiency in performance, area,
and energy consumption [5]. If we focus on cache and FSL
configurability, we have for each cache memory 7 possi-
ble configurations and for the FSL 11 possible configura-
tions. The design space associated with those parameters
(74 � 118, thus 514 675 673 281 different configurations) re-
quires 16 321 years of simulation for 1 minute simulation per
configuration.

4. MOCDEX MULTIOBJECTIVE DESIGN
SPACE EXPLORATION

4.1. Problem formulation

The design challenge represented by soft IP-based multipro-
cessor design is a multiobjective optimization problem [2].
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Table 1: Multiprocessor soft IP resources variation.

Soft IP
Slices FF BRAM

Parameters Soft IP
Slices FF BRAM

ParametersMin Min Min Min Min Min

Max Max Max Max Max Max

MicroBlaze
731
var

552
var

0
var

Cache sizes
1 K, 2 K, 4 K, 8 K,
16 K, 32 K, 64 K

OPB
46
410

5
121

N/A
N/A

Data bus width,

address bus width,

arbiter

OPB PCI
340
3025

445
2105

0
2+

Interface/DMA

parameters

FSL
width/depth

21
451

36
34

0
17

FIFO sizes
OPB timer

99 105
0

Timer counter

8, 16, 32, 64, 128, 200 266 widths

256, 512, 1 K,
OPB intr ctr

54 63
0

Number of

2 K, 4 K, 8 K 307 342 interrupt inputs

The multiobjective optimization problem is the problem of
simultaneously minimizing the n components (e.g., area,
number of execution cycles, energy consumption), fk, k =
1, . . . ,n, of a possibly nonlinear function f of a general deci-
sion variable x in a universe U , where

f (x) = ( f1(x), f2(x), . . . , fn(x)
)
. (1)

The problem has usually no unique optimal solution but a set
of nondominated alternative solutions known as the Pareto-
optimal set. The dominance is defined as follows.

Definition 1 (Pareto dominance). A given vector u = (u1,
u2, . . . ,un) is said to dominate v = (v1, . . . , vn) if and only if
u is partially less than v (up < v), that is,

�i � �1, . . . ,n�, ui � vi, �i � �1, . . . ,n� : ui < vi.
(2)

The Pareto optimality definition derives from the Pareto
dominance.

Definition 2 (Pareto optimality). A solution xu � U is said to
be Pareto optimal if and only if there is no xv � U for which
v = f (xv) = (v1, . . . , vn) dominates u = f (xu) = (u1, . . . ,un).

Pareto-optimal solutions are also called efficient, non-
dominated, and noninferior solutions. The corresponding
objective vectors are simply called nondominated. The set of
all nondominated vectors is known as the nondominated set
or the Pareto set (also Pareto-optimal set or Pareto-optimal
front). This Pareto set can be seen as the tradeoff surface
of the problem. The solution of a practical problem such as
multiprocessor system on chip (MPSoC) design may be con-
strained by a number of restrictions imposed on a decision
variable. Constraints may express the domain of definition
of the objective function or alternatively impose further re-
strictions on the solution of the problem according to knowl-
edge at a higher level. In the general case of system on pro-
grammable chip, the amount of on chip memory for example
is fixed and represents a clear and stringent constraint. The
constrained optimization problem is that of minimizing a
multiobjective function ( f1, . . . , fk) of some generic decision
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variable x in a universe U subject to a positive number n� k
of conditions involving x and eventually expressed as a func-
tional vector inequality of the type

(
fk+1(x), . . . , fn(x)

)
<
(
gk+1, . . . , gn

)
, (3)

where the inequality applies component-wise. It is implicitly
assumed that there is at least one point in U which satisfies all
constraints although in practice that cannot always be guar-
anteed.

The case study of multiobjective optimization we will ad-
dress in this paper is the minimization of area (BRAM f 1
and slices resources f 2) and execution time (number of cy-
cles f 3) representing a 3-objectives multiobjective problem.

4.2. Multiobjective optimization and multiobjective
evolutionary algorithms (MOEA)

Multiobjective optimization have not been addressed prop-
erly by traditional optimization techniques (gradient based,
simulated annealing, linear programing) since most of these
techniques are mono-objective. Extending these techniques
through approaches using aggregation functions does not
represent true multiobjective optimization and does not pro-
duce multiple solutions. Multiobjective evolutionary algo-
rithms (MOEA) are more appropriate to solve optimization
problems with concurrent conflicting objectives and are par-
ticularly suited for producing Pareto-optimal solutions. Sev-
eral Pareto-based evolutionary algorithms have been pro-
posed during the last decade, SPEA-2, PESA, and NSGA-
II, [2, 15] to solve multicriteria optimization problems. The
NSGA-II [16] is an MOEA considered to outperform other
MOEA [17] and is briefly presented below.

Individuals classification

Initially, before carrying out the selection, one assigns to each
individual in the population a row rank (by using the Pareto
set). All the nondominated individuals of the same row are
classified in a category. To this category, we assign effective-
ness, which is inversely proportional to the order of Pareto
set. Figure 4 presents an example of classification in Pareto
sets.

Main loop of algorithm NSGA-II [16]

Initially, a random parent population P0 is created. Each in-
dividual of this population is affected to an adequate Pareto
rank. From the population P0, we apply the genetics op-
erators (selection, mutation, and crossover) to generate the
population child Q0 of size N . The elitism is ensured by the
comparison between the current population Pt and the pre-
ceding population Pt�1. The NSGA-II procedure follows (see
Algorithm 1).
The NSGA-II algorithm runs in time O(GN logM�1 N),
where G is the number of generations, M is the number of
objectives, and N is the population size [17]. In addition, our
previous experience on multiobjective optimization of soft
IP embedded processor [18, 19] emphasizes this choice.
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X2

X3

X4

X5
X6

X7

X8

X9

X10
X11

X12

X13

X14

X15

S1

S2

S3

Figure 4: Classification of the individuals in several fronts accord-
ing to the Pareto rank (list of Pareto sets).

Rt = PtUQt # combine parent and children
population

F = fast-nondominated-sort (Rt) # F all
nondominated fronts sets

Pt+1 =� and i = 1 # initialization
until �Pt+1� + �Fi� � N # till parent pop is filled

Crowding-distance-assignment (Fi) # compute
distance in Fi
Pt+1 = Pt+1UFi # include ith nondominated

front in the parent pop
i = i + 1 # check the next front for inclusion

Sort (Fi,<n) # Sort in descending order using <n

Pt+1 = Pt+1UF[1 : (N � �Pt+1�)] # Choose the first
(N � �Pt+1�) elements

Qt+1 =make-new-pop (Pt+1) # apply genetic
operators to create new pop Qt+1

T = t + 1 # increment to next generation

Algorithm 1: NSGA-II.

4.3. MOCDEX

It is clear that MOEAs such as NSGA-II requires the evalu-
ation of individuals (MPSoC configurations) with regard to
the 3 objectives considered, BRAM, slices and number of cy-
cles Although, BRAM and slices, could be estimated, we ad-
vocate the full use of design automation tools including place
and route to access this information. Indeed, for complex
systems on large platform FPGA place and route impact can-
not be overlooked and can hardly be estimated with sufficient
accuracy to be used in an automatic multiobjective design
space exploration tool. The execution time of multiprocessor
on chip can be obtained through simulation either at RTL
level which would be prohibitive for large design space explo-
ration without massive use of computing resources (compute
farms) or at TLM level (SystemC) as often advocated [20, 21].
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However although SystemC level simulation has been regu-
larly proved to outperform RTL VHDL level simulation, it
does not outperform actual execution on FPGA. We argue
that for large scale MPSOC, FPGA platform represents an
opportunity to both reduce simulation time through actual
execution and increase the design space exploration through
this reduction of the evaluation of each MPSOC configura-
tion. Our proposal follows.

MOCDEX (general)

(1) Generate random population of MPSOC configura-
tions within soft IP parameters constraints.

(2) For all configurations,

(a) generate hardware/software platform specifica-
tion files,

(b) generate through system EDA and IPs HW/SW
model of the MPSOC,

(c) synthesize/place and route MPSOC configura-
tion using EDA tools,

(d) record place and route reports,
(e) download configuration file on FPGA platform,
(f) execute MPSOC configuration and record execu-

tion clock cycles,
(g) rank the solution.

(3) Generate new population using MOEA algorithm.
(4) Is the Pareto front satisfactory or the number of gener-

ations reached if no goto 3?
(5) Final Pareto front MPSOC configurations are available

for selection.

As shown in Figure 5, both the DSE and physical design are
executed on a host PC while the execution is achieved on a
PCI-based FPGA platform which communicates execution
results to the host.

5. CASE STUDY AND VALIDATION

The previously described design flow has been applied in the
framework of Xilinx FPGA platforms.

5.1. Image filtering application

A design of four Xilinx MicroBlaze processors, communicat-
ing with eight FSL channels in a mesh topology and execut-
ing image filtering algorithms, was implemented at 100 MHz.
This application was chosen because it requires extensive
data processing and data communication among the filters
for a good and fast testing of our exploration framework.

Figure 6 shows our filtering methodology. As we can see,
the execution is achieved in a pipelined way where image
lines are sent from a processor to another as soon as the pre-
vious processor has finished its work on it. Obviously, this
type of execution makes us save a significant amount of time
and memory which are often the major constraints for em-
bedded systems in general and for our platform in particular.
Indeed, performing this task in a pipelined way allows us to

Parallel
application

Multiprocessor
platform

Design space
exploration

Physical
design

1. MOEA

2. Synthesis

3. Place & route

FPGA implementation

Figure 5: MOCDEX MPSOC exploration flow.

n = 0–255

- Read image

- Save image

Median
filtering

Conservative
smoothing

Mean
filtering

P0 P1 P2 P3

Line
n + 3

Line
n + 2

Line
n + 1

Line n

Figure 6: Image filtering application multiprocessor platform dis-
tribution.

have a maximum of three image lines stored in the associated
processor’s memory rather than the whole image. The rest of
the image lines will enter the FIFOs (FSLs) of their respective
processors one by one. The processor P0 in Figure 6 receives
image data from the host computer through the PCI bus.
Once it receives the data it immediately sends it to the next
processor which is P1. P1 performs a median filtering which
results in noise reduction from the image. It is performed
on a 3-by-3 pixel window where the center pixel value is re-
placed by the median of the neighboring pixel values. This
value is obtained by sorting the pixels based on their numer-
ical values and then replacing the pixel to be processed by the
middle value. The processor P2 fetches the line coming from
P1 and performs a conservative smoothing on it which is an
operation that preserves the high spatial frequency details.
Finally, the third processor P3 performs a mean filtering
which consists of very simple method used for noise reduc-
tion where the pixel to be processed is replaced by the average
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Figure 7: Alpha-data ADM-XRC-II and ADC-PMC boards.

Table 2: Multiprocessor on chip design space.

Procs FSL1Out FSL2Out D-Cache I-Cache

MB0 16 . . . 2048 16 . . . 2048 512 . . . 4096 512 . . . 4096

MB1 16 . . . 2048 16 . . . 2048 512 . . . 4096 512 . . . 4096

MB2 16 . . . 2048 16 . . . 2048 512 . . . 4096 512 . . . 4096

MB3 16 . . . 2048 16 . . . 2048 512 . . . 4096 512 . . . 4096

value of its neighbors. Due to the different amount of com-
putations required by each filter, it results in different work-
load for each processor. Thus the execution time for each
algorithm differs and hence involves an unequal FIFOs oc-
cupancy. Therefore, the application used has to be naturally
unbalanced to thoroughly analyze the problem. The problem
at hand is to optimally distribute the limited on chip embed-
ded memory among the embedded processors cache memo-
ries (instruction, data) and the communication FIFOs while
optimizing execution time and area. The design space for this
problem is specified in Table 2.

The possible number of different configurations is given
by the product of the number of distinct configurations for
each configurable architectural parameter. Each cache mem-
ory may have up to 4 different sizes and each FIFO up to
8 different sizes. The total design space represents (4 � 4 �
8 � 8)4 = 240 configurations. If each configuration evalua-
tion would require 1 second, the total evaluation time would
be 34 865 years of evaluation. Clearly an exhaustive evalua-
tion technique is unfeasible and multiobjective optimization
techniques are able to efficiently prune this design space
while simulation is clearly outperformed by direct execution
on large scale FPGA devices.

5.2. Alpha-data environment

For the implementation of MOCDEX we used the alpha-data
hardware and software environment.

Table 3: Xilinx virtex-II XC2V 8000 resources.

XC2V8000 Values

Slices 46 952

BRAM (18 Kbits) 168

18� 18 multipliers 168

DCM 12

Max. Dist RAM Kb 1456

5.2.1. Alpha data hardware environment

The alpha-data hardware environment described in Figure 7
is composed by (1) the ADC-PMC and (2) the ADM-XRC-
II. The ADC-PMC is a dual PMC adapter for PCI. It supports
64-bit 66 MHz primary and secondary PCI via an Intel 21154
PCI-PCI bridge device. The ADM-XRC-II is a high per-
formance reconfigurable PMC (PCI mezzanine card) based
on the Xilinx Virtex-II range of platform FPGAs. Features
include high-speed PCI interface, external memory, high-
density I/O, programmable clocks, temperature monitoring,
battery backed encryption, and flash boot facilities.

On board clock generator provides a synchronous local
bus clock for the PCI interface and the Xilinx Virtex-II FPGA.
A second clock is provided to the Xilinx Virtex-II FPGA
for user applications and can be free running or stepped
under software control. Both clocks are programmable and
can be used by the Virtex clock. The user clock has a max-
imum value of 100 MHz. The ADM-XRC-II uses a Xilinx
XC2V8000-6 FF1152 device [22] whose characteristics are
described Table 3.

5.2.2. Alpha-data software environment

The ADM-XRC SDK is a set of resources including an
application-programing interface (API) intended to assist
the user in creating an application using one of Alpha-data’s
ADM-XRC range of reconfigurable coprocessors. The API
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Table 4: ADM XRC SDK API functions.

Group Application

Initialization

ADMXRC2 CloseCard

ADMXRC2 OpenCard

ADMXRC2 OpenCardByIndex

ADMXRC2 SetSpaceConfig

FPGA configuration
through PCI

ADMXRC2 ConfigureFromBuffer

ADMXRC2 ConfigureFromBufferDMA

ADMXRC2 ConfigureFromFile

ADMXRC2 ConfigureFromFileDMA

ADMXRC2 LoadBitstream

ADMXRC2 UnloadBitstream

Data transfer
PC = FPGA board

ADMXRC2 BuildDMAModeWord

ADMXRC2 DoDMA

ADMXRC2 DoDMAImmediate

ADMXRC2 MapDirectMaster

ADMXRC2 Read

ADMXRC2 ReadConfig

ADMXRC2 SetupDMA

ADMXRC2 SyncDirectMaster

ADMXRC2 UnsetupDMA

ADMXRC2 Write

ADMXRC2 WriteConfig

Interrupt handling
ADMXRC2 RegisterInterruptEvent

ADMXRC2 UnregisterInterruptEvent

makes use of a device driver that is normally not directly
accessed by the user’s application. The API library described
in Table 4 takes care of open, close, and device I/O control
calls to the driver. The ADM-XRC SDK is designed to be
thread-safe. Table 4 describes the main API functions which
allow initializing the board, configuring the FPGA though
the PCI bus, and transfering data between the FPGA and the
host computer and the interrupt handling.

Clearly since MOCDEX explore the design space by im-
plementing on FPGA new multiprocessor configurations the
FPGA is reconfigured through the PCI bus from the main
program by executing the ADM-XRC SDK FPGA reconfig-
uration API using the bitfile generated from EDK synthesis
and place and route. Resulting execution number of cycles
are provided as well through the PCI bus to the host using
ADM-XRC SDK data transfer API.

5.3. Xilinx EDK tools

The embedded development kit (EDK) bundle is an inte-
grated software solution for designing embedded processing
systems.

Table 5 and Figure 8 describe the use of each configura-
tion file in the process of hardware platform generation, soft-
ware platform generation, and software application and cre-
ation.

The MHS file defines the system architecture, peripher-
als, and embedded processors. It also defines the connectivity

of the system, the address map of each peripheral in the sys-
tem, and configurable options for each peripheral. The MHS
file can be defined through XPS Gui wizards. However for the
time being Xilinx wizards do not allow the design of multi-
processors platforms and therefore they should be defined
directly in the MHS file. It is clear that in the purpose of
design space exploration of multiprocessor architecture the
MHS file is the prime target of modifications. Changing pa-
rameters value in the MHS file generates a new multipro-
cessor configuration and invoking the XPS tool in no win-
dow mode from a main program allows the generation of the
multiprocessor netlist. Table 6 provides examples of MHS file
parts.

5.4. Exploration flow description

The proposed automatic design flow described in Figure 5
can be applied in the framework of Xilinx EDA tools and
the Alpha-data environment. The flow is mainly composed
of 3 parts: (1) architecture design space exploration engine
(DSE), (2) physical design, and (3) FPGA platform PCI
board. The architecture design space exploration part con-
trols the whole flow and runs on a host PC. First based on
the user specified design space parameters and parameters
range, the DSE specifies the architectural parameters of the
multiprocessors configurations to be evaluated then trans-
lates those parameters into platform EDA design tool input
file specifications. In our case,

(1) MOCDEX for Xilinx FPGA platform,
(2) generate random population of MPSoC configura-

tions (caches and FSL variations),
(3) for all configurations,

(a) generate hardware/software platform specifica-
tion files (mhs, mpd, pao, mss, mld, mdd, files),

(b) generate through Xilinx system XPS and Xilinx
IPs HW/SW model of the MPSOC,

(c) synthesize/place and route MPSOC configura-
tion using Xilinx ISE 6.3,

(d) record place and route reports generated from
Xilinx ISE 6.3,

(e) download configuration file on FPGA Alpha-
data platform using ADM-XRC SDK API,

(f) execute MPSOC configuration and record execu-
tion clock cycles using ADM-XRC SDK API,

(g) rank the solution,

(4) generate new population using NSGA-II algorithm,
(5) is the Pareto front satisfactory or the number of gener-

ations reached if no goto 3?
(6) final Pareto front MPSOC configurations available for

selection.

The Xilinx system EDA tools Xilinx platform studio (XPS) is
ran in no window mode with all batch commands launched
from a C main program. Those input file specifications are
used to control the physical design part of the implementa-
tion by synthesizing, placing, and routing the multiprocessor
configurations onto FPGA platform devices. The generated
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Table 5: EDK specifications files.

Files Description Comments

MHS Microprocessor hardware specification The MHS defines the hardware component

MSS Microprocessor software specification The MSS contains directives for customizing libraries, drivers, and file systems

MDD Microprocessor driver definition An MDD file contains directives for customizing software drivers

MPD Microprocessor peripheral definition The MPD defines the interface of the peripheral

MLD Microprocessor library definition
the MLD contains directives for customizing software libraries and
operating systems

PAO Peripheral analyze order
Contains a list of HDL files that are needed for synthesis, and defines the
analyze order for compilation.

ISE HW impl.

Embedded software tool architecture

Simulators

Sim. plat. gen.

Sim. spec. ed.

HW plat. gen.

HW spec. ed.

BSB wizard

XPS

Bitinit

XMD

SW debugger

SW compilers

SW source ed.

SW plat. gen.

SW spec. ed.

Figure 8: Xilinx EDK (XPS Xilinx platform studio).

FPGA configuration bitstream is downloaded on the FPGA
device for execution and performance evaluation of the mul-
tiprocessor. The board hosting the FPGA device is an Alpha-
data PCI FPGA board [3]. The implementation area and re-
sources of the multiprocessor configurations are provided by
the design automation tools composing part (2) while per-
formance results in number of clock cycles are obtained from
the actual execution of the multiprocessor configurations.
These informations are automatically fed back to the DSE
engine which runs on the host through the PCI bus.

The number of cycles are obtained directly from the exe-
cution, thanks to a timer connected to the MicroBlaze (MB0)
OPB bus, which counts the number of clock cycles. After
that, the execution time results are communicated to the host
PC using an IP which bridges the MicroBlaze OPB bus to
the PCI host bus. These results (occupied slices, occupied
BRAM, and the execution time) are then injected as feed-
back input to the evolutionary algorithm for the next genera-
tion run. For this work we initially executed two explorations
where the first consisted of a population size of 22 individuals
and 10 generations (242 implementations with the initializa-
tion generation).

6. EXPLORATION RESULTS

6.1. Flow execution results

Figures 10 and 11 describe the corresponding results of these
implementations. Figure 10(b) represents Pareto solutions
for the second exploration where we attempted to increase
the population size to 30 individuals and the number of gen-
erations to 14 in order to observe the behavior of the evolu-
tionary algorithm for bigger explorations. From the results
of second exploration it is obvious that the algorithm is con-
verging to optimal solutions showing that for larger popula-
tion size and generation size, potential of convergence is in-
creased in NSGA-II algorithm as was expected. From the two
preceding exploration flow executions, it appears as expected
since we focused on embedded memories that the number
of occupied slices does not vary much across multiprocessor
configurations. However the variations are much more sig-
nificant concerning both the number of occupied BRAMs
and the execution time. So we decided to continue the ex-
ecution of the proposed exploration flow in order to see its
evolution.
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Table 6: MHS file parts: Microprocessor IP, FSL IP, BRAM controller IP.

MicroBlaze processor FSL communication BRAM controller

BEGIN MicroBlaze BEGIN fsl v20 BEGIN lmb bram if cntlr

PARAMETER INSTANCE =MicroBlaze 0 PARAMETER INSTANCE = fsl v20 7 PARAMETER INSTANCE = ilmb cntlr3

PARAMETER HW VER = 3.00.a PARAMETER C FSL DEPTH = 8 PARAMETER HW VER = 1.00.b

PARAMETER C FSL LINKS = 2 PARAMETER HW VER = 2.00.a PARAMETER C BASEADDR

BUS INTERFACE MFSL0 = fsl v20 2 PARAMETER C EXT RESET HIGH = 0 = 0� 00000000

BUS INTERFACE SFSL0 = fsl v20 1 PARAMETER C IMPL STYLE = 1 PARAMETER C HIGHADDR

BUS INTERFACE DLMB = dlmb0 PARAMETER C USE CONTROL = 0 = 0� 00003fff

BUS INTERFACE ILMB = ilmb0 PORT SYS Rst = lreseto l BUS INTERFACE SLMB = ilmb3

BUS INTERFACE DOPB =mb opb0 PORT FSL Clk = lclk BUS INTERFACE BRAM PORT

BUS INTERFACE IOPB =mb opb0 PORT FSL M Clk = lclk = ilmb port3

PORT INTERRUPT = Interrupt 0 PORT FSL S Clk = lclk END

PORT CLK = lclk END

END

HW plat. gen.

Platgen

MHS file

EDIF, NGC,
VHD, V, BMM

HW spec. ed.
XPS, wizards

MHS file

XPS

Hardware platform creation

(a)

SW plat. gen.

Libgen

MSS, MHS,
lib/�.c, lib/�.h

libc.a, libXil.a

SW spec. ed.

Emacs, XPS MSS editor

MSS file

XPS

Software platform

(b)

SW source ed.
Emacs, XPS MSS editor

.c and .h files

Mb-gcc, ppc-gcc
SW compilers

.elf file

.c and .h files
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.c and .h files
.elf file

SW debuggers
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Figure 9: Xilinx EDK. (a) Hardware platform generation. (b) Software platform. (c) Simulation and verification.
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Figure 10: (a) For 10 generations-popsize = 22. (b) For 14 generations-popsize = 30.
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Figure 11: (a) For 30 generations-popsize = 30. (b) For 60 generations-popsize = 30.
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Figure 12: Pareto front. (a) Pareto front performance distribution. (b) Pareto front BRAM distribution.

For this second part of the exploration, we fixed the pop-
ulation size to 30 individuals and changed the number of
generation to 30 and finally 60 generations. The results for
each execution are, respectively, described in Figures 11(a)
and 11(b). From these different figures we can clearly observe
that the NSGA-II evolutionary algorithm tends to converge
to the optimal Pareto solutions front which proves the correct
implementation of the algorithm. The figures show different
execution times for the same BRAM occupation meaning
that using more BRAM will not systematically result in per-
formance improvements.

However, to achieve better results BRAM resources need
to be well distributed among the IPs where it would be used
for getting optimal resource utilization.

Figure 12 shows the distribution of performance in the
final Pareto front and clearly few configurations demon-

strate superior performance while BRAM distribution for
the same front demonstrates an uneven use of BRAM.
This clearly shows the impact of BRAM careful distribu-
tion.

Examples of final Pareto front configurations are given
in Table 7. The configurations chosen represent, respectively,
69.64%, 61.90%, and 64.88% of all BRAM resources. 11.11%
BRAM reduction is obtained in the second configuration for
a 0.004% increase in execution time while a 6.8% BRAM
reduction is obtained in the third configuration for a 0.009%
increase in the execution time.

6.2. Flow execution time

The results achieved in the previous section required the
performance evaluation of 3120 different multiprocessor
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Table 7: The design space associated with those parameters (74 � 118, thus 514 675 673 281 different configurations) requires 16 321 years
of simulation for 1 minute simulation per configuration.

Procs FSL1Out FSL2Out D-Cache I-Cache

MB0 2048 2048 1024 4096

MB1 512 512 1024 1024

MB2 2048 512 2048 2048

MB3 1024 1024 4096 4096

(a) Cycles: 138 974 816 BRAM: 109.

Procs FSL1Out FSL2Out D-Cache I-Cache

MB0 2048 128 2048 2048

MB1 256 32 2048 512

MB2 512 16 4096 512

MB3 1024 32 512 2048

(b) Cycles: 138 844 064 BRAM: 117.

Table 8: Flow execution time direct execution versus simulation.

Flow main steps Functions Time

Multi-objective
evolutionary
algorithm (ms)

Indi. Gene. 190
Obj functions eval. 293

Selection 0.116
Crossover 0.033
Mutation 1.118

Synthesis (sec)
Synthesis 523.503
P and R 655.174

P/R & Bitgen 797.856

Evaluation
Exploration 60� 30

2250 days
1.39 hourSim. 64� 64

Direct exec. 256� 256

on-chip configurations. These evaluations have been cycle-
accurate after actual implementation on single-chip large
scale FPGA devices. Contrary to traditional board-based
multiprocessor, multiprocessors on chip are implemented on
single chip; and due to the complexity of these architectures
and the scale of the target devices, it is not possible to over-
look the impact of place and route on the number of cycles
required for various operations and on the cycle time.

It results from this fact that comparing different multi-
processors on chip configurations on the number of execu-
tion cycles is meaningless if one does not take into account
the impact of place and route on each distinct configura-
tion resulting from actual implementation. From this point
mainly two alternatives exist: (1) post place and route sim-
ulation which will accurately represent the multiprocessor
on chip behavior, and (2) emulation through direct execu-
tion. We conducted cycle accurate simulations using a pow-
erful multi-language (SystemC, VHDL, Verilog-HDL) simu-
lator ModelSim 6.0. Indeed, ModelSim 6.0 can handle large
and complex designs and allow their simulation in a post-
synthesis and post-place and route modes. Table 8 describes
the very important time savings while using direct execution
instead of simulation. Simulation would require 2250 days of
simulation versus 1.39 hour for direct execution.

In order to reach the same evaluation speed at this level of
accuracy it would require a compute farm (grid computing)
of well over 25 000 workstations. The proposed flow execu-
tion time is obviously very competitive with regard to Sys-
temC approaches [20, 21] for platform-based design. Similar
observations have been drawn for embedded processors de-
sign space exploration [18, 19].
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Figure 13: Explored design space. (a) Slices histogram. (b) BRAM
histogram.

7. EXPLORED DESIGN SPACE STATISTICAL ANALYSIS

If we analyze in detail the complexity landscape of such a de-
sign space exploration we obtain the configurations distri-
bution found in Figures 13 and 14. Clearly from these his-
tograms we see that slices, BRAM, and performance (execu-
tion time) distributions in the explored design space are very
different and demonstrate that the design space exploration
was not confined in a limited subspace but explored a large
diversity of multiprocessor configurations. The explored de-
sign landscape is given in Figure 15.
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Figure 15: MOCDEX explored design space.

Figure 15 demonstrates the complexity of the design
landscape and emphasizes the need to match this complex-
ity with appropriate applied mathematics optimization tech-
niques.

8. CONCLUSION

The design complexity of multiprocessors on chip requires
efficient design methodologies. We propose in this paper a
novel technique which fully integrates architectural design
space exploration with design automation tools, where all
area and performance results are obtained from actual post-
synthesis place and route and actual execution on large scale
FPGA platforms. To the best of our knowledge, our work is
the first to fully integrate and therefore close the gap between
design automation tools and architecture design space ex-
ploration technique in a multiobjective constraints paradigm
with actual execution for all multiprocessor on chip configu-
rations explored during the design space exploration process.

It is important to note that actual execution reduces explo-
ration time and can be exploited for either reducing design
cycle time (i.e., TTM) and/or exploring even larger design
space by including additional parameters. This work can be
easily extended to include more parameters at various ab-
straction levels from architecture to circuit allowing interest-
ing tradeoffs between usually uncorrelated various abstrac-
tion levels in the general design flow.
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1. INTRODUCTION

The integration of multimillion gate configurable logic and
various heterogeneous hardware components, such as em-
bedded multipliers and memory blocks, offers FPGAs ex-
ceptional computational capabilities. Soft processors, which
are RISC processors realized using configurable resources
available on FPGA devices, have become popular for em-
bedded system development. Examples of such soft proces-
sors include Nios from Altera [1], a SPARC architecture-
based LEON3 from Gaisler [2], an ARM7 architecture-based
CoreMP7 from Actel [3], and MicroBlaze from Xilinx [4].
As shown in Figure 1, for the development of FPGA-based
embedded systems, parts of the application can be executed
either on soft processors as programs or on customized
hardware peripherals attached to the processors. Customized
hardware peripherals are efficient for executing many data
intensive computations. On the other hand, processors are
efficient for executing many control and management func-
tions, and computations with tight data dependency between
steps (e.g., recursive algorithms). The use of soft processors

leads to more compact designs and thus requires a much
smaller amount of hardware resources than that of cus-
tomized hardware peripherals. Having a compact design that
fits into a small FPGA device can effectively reduce static en-
ergy dissipation [5]. The ability to make hardware and soft-
ware design tradeoffs has made FPGAs an attractive choice
for implementing a wide range of embedded systems.

Energy efficiency is an important performance metric
for many embedded systems, such as software-defined ra-
dio (SDR) systems. In SDR systems, dissimilar and com-
plex wireless standards (e.g., GSM, IS-95) are processed in
a single adaptive base station, where a large amount of data
from the mobile terminals present high computational re-
quirements. State-of-the-art RISC processors and DSPs are
unable to meet the signal processing requirements of these
base stations. Power consumption minimization has become
a critical issue for base stations, due to the high computa-
tional requirement that leads to high energy dissipation in
inaccessible and distributed base station locations. FPGAs
stand out as an attractive choice for implementing various
SDR functions due to their high performance, low power
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Figure 1: FPGA-based hardware-software codesign.

dissipation per computation, and reconfigurability [6]. Many
hardware-software mappings and application implementa-
tions are possible on modern FPGA devices. The various
hardware-software mappings and implementations can re-
sult in a significant variation in energy dissipation. There-
fore, being able to obtain the energy dissipation of these dif-
ferent mappings and to evaluate implementations of the ap-
plications rapidly is crucial to energy efficient application de-
velopment using FPGAs.

In this paper, we consider an FPGA device configured
with a soft processor and several customized hardware pe-
ripherals attached to it. The processor and the hardware pe-
ripherals communicate with each other through specific bus
protocols. The target application is decomposed into a set of
tasks. Each task can be mapped onto either a soft processor
(i.e., software), or a specific customized hardware peripheral
(i.e., hardware), for execution. A specific mapping and exe-
cution schedule of the tasks are given. For tasks executed on
customized hardware peripherals, their implementations are
described using high-level modeling environments (e.g., MI-
LAN [7], Matlab/Simulink [8], and Ptolemy [9]). For tasks
executed on the soft processor, the software implementations
are described as C code and compiled using the appropriate
C compiler. One or more sets of sample input data are also
given. Under these assumptions, our objective is to rapidly
and accurately (within about 10%) obtain the energy dissipa-
tion of the complete application.

There are two major challenges for rapid and accurate
energy estimation for hardware-software codesigns using FP-
GAs. One challenge is that state-of-the-art energy estimation
tools are based on low-level (register transfer level and gate
level) simulation results. While these low-level energy esti-
mation techniques can be accurate, they are time-consuming
and would be intractable when used to evaluate the energy
performance of the different FPGA implementations. This is

especially true for software programs running on soft pro-
cessors. Considering the designs described in Section 5, the
simulation of ∼ 2.78 milliseconds execution time of a matrix
multiplication application using post place-and-route sim-
ulation models takes about 3 hours in ModelSim [10]. Us-
ing XPower [4] to analyze the simulation file that records the
switching activities of low-level hardware components and to
calculate the overall energy dissipation requires an additional
hour. The other challenge is that high-level energy perfor-
mance modeling, which is crucial for rapid energy estima-
tion, is difficult for FPGA designs. Lookup tables connected
through programmable interconnect, the basic elements of
FPGAs, can realize a wide range of different hardware archi-
tectures. They lack a single high-level model found in general
purpose processors, which can capture the energy dissipation
behavior of the various possible architectures.

As discussed in Section 2, while instruction-level energy
estimation techniques can provide rapid energy estimates of
processor cores with satisfactory accuracy, they are unable to
account for the energy dissipation of customized instructions
and tightly coupled hardware peripherals. More detailed en-
ergy performance models are required to capture the energy
behavior of the customized instructions and hardware pe-
ripherals.

We propose a high-level simulation-based two-step rapid
energy estimation technique for hardware-software codesign
using FPGAs. In the first step, a high-level modeling en-
vironment is created to combine the corresponding high-
level abstractions that are suitable for describing the hard-
ware and software execution platforms. Within this high-
level modeling environment, hardware-software cosimula-
tion is performed to evaluate a cycle-accurate high-level be-
havior of the complete system. Instruction profiling infor-
mation of the software execution platform and high-level ac-
tivity information of the customized hardware peripherals
are gathered during the cycle-accurate cosimulation process.
The switching activities of the corresponding low-level im-
plementations of the customized hardware peripherals are
then estimated. In the second step, by utilizing the instruc-
tion profiling information, an instruction-level energy esti-
mation technique is employed to estimate the energy dissi-
pation of software execution. Also, by utilizing the estimated
low-level switching activity information, a domain-specific
modeling technique is employed to estimate the energy dis-
sipation of hardware execution. The energy dissipation of the
complete system is obtained by summing the energy dissipa-
tion of hardware and software execution.

A Matlab/Simulink-based implementation of the pro-
posed energy estimation technique and two widely used nu-
merical computation applications are used to demonstrate
the effectiveness of our approach. For various implementa-
tions of these two applications, our high-level cosimulation
technique achieves more than a 6000x speedup versus tech-
niques based on low-level simulations. Such speedups can
directly lead to a significant speedup in energy estimation.
Compared with low-level techniques, our high-level simu-
lation approach achieves an average estimation error of less
than 10%. Compared with experimentally measured results,
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our approach achieves an average estimation error of less
than 12%.

The paper is organized as follows. Section 2 discusses re-
lated work. Section 3 describes our two-step rapid energy
estimation technique. An implementation of our technique
based on a state-of-the-art high-level modeling environment
is presented in Section 4. The design of two numerical com-
putation applications is described in Section 5. We conclude
in Section 6.

2. RELATED WORK

Energy estimation techniques for FPGA designs can roughly
be divided into two categories. One category is based on low-
level simulation, which is employed by tools such as Quartus
II [1], XPower [4], and the tool developed by Poon et al. [11].
In low-level simulation-based energy estimation techniques,
the user generates low-level implementations of the FPGA
designs. Simulation is performed based on the low-level im-
plementations to obtain the switching activity of the low-
level hardware components used in the FPGA design (e.g.,
basic configurable units and programmable wires). Each of
the low-level hardware components is associated with an en-
ergy function that captures its energy behavior with different
switching activities. Using the low-level simulation results
and the low-level energy functions, the user can estimate the
energy dissipation of all low-level components. The energy
dissipation of the complete application is calculated as the
sum of the energy dissipation of the low-level hardware com-
ponents. Low-level estimation techniques are inefficient for
FPGA-based hardware-software codesign. The creation of a
low-level implementation includes synthesis, placement, and
routing. This sequence forms a lengthy process. Simulations
based on low-level implementations are very time consum-
ing. This is especially true for the simulation of software.

The other category of energy estimation techniques is
based on high-level energy models. The FPGA design is rep-
resented as a few high-level models interacting with each
other. The high-level models accept parameters that have a
significant impact on energy dissipation. These parameters
are predefined or provided by the application designer. This
technique is used by tools such as the RHinO tool [12] and
the web power analysis tools from Xilinx [13]. While energy
estimation using this technique can be fast, as they avoid
time-consuming low-level simulation, its estimation accu-
racy varies among applications and application designers.
One reason is that different applications demonstrate differ-
ent energy dissipation behaviors. We show in [14] that using
predefined parameters for energy estimation results in en-
ergy estimation errors as high as 32% for input data with
different statistical characteristics. The other reason is that
requiring the application designer to provide these impor-
tant parameters would demand a deep understanding of the
energy behavior of the target devices and applications, which
can prove to be very difficult in practice. This approach is not
suitable for estimating the energy estimation of software ex-
ecution as instructions with different energy dissipations are
executed on soft processors.

Step 1:
Cycle-accurate high-level

hardware/software cosimulation

Cycle-accurate
arithmetic level simulation

for hardware execution

Cycle-accurate
instruction set simulator

for software execution

Synchronization and
data exchange

Estimates of
switching activity

Instruction-level
energy estimator

Domain-specific modeling-
based energy estimation

Instruction profiling
information

High-level
simulation results

Step 2: Energy estimation of the complete system

Figure 2: The two-step energy estimation approach.

For software execution on processors, instruction-level
energy estimation is an effective technique for obtaining en-
ergy dissipation. This technique is used by several popular
commercial and academic processors, such as Wattch [15],
JouleTrack [16], and SimplePower [17]. JouleTrack estimates
the energy dissipation of software programs on StrongARM
SA-1100 and Hitachi SH-4 processors. Wattch and Simple-
Power estimate the energy dissipation of an academic Sim-
pleScalar processor. We proposed an instruction-level energy
estimation technique in [18], which can provide rapid and
accurate energy estimation for FPGA-based soft processors.
These energy estimation frameworks and tools target proces-
sors with fixed architectures. They do not account for the
energy dissipated by customized hardware peripherals and
communication interfaces. Thus, they are unable to provide
energy estimation of combined hardware-software designs
targeted to FPGA platforms. Low-level energy models are re-
quired for customized hardware peripherals.

3. OUR APPROACH

Our two-step approach for the rapid energy estimation of
the hardware-software designs using FPGAs is illustrated in
Figure 2. The two energy estimation steps are discussed in
detail in the following sections.

3.1. Step 1: high-level cosimulation

In the first step, a high-level cosimulation is performed to si-
multaneously simulate hardware and software execution on
a cycle-accurate basis. Note that we use “cycle-accurate” to
denote that on both positive and negative edges of the simu-
lation clock, the behavior of the high-level simulation mod-
els matches the corresponding low-level implementations.
Other timing information between the clock edges (e.g., the
glitches), as well as the logic and path delays between the
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Figure 3: Architecture of the cycle-accurate high-level cosimulation environment.

hardware components, is not accounted for in the high-level
simulation. There are two major advantages of maintaining
cycle accuracy during cosimulation. One advantage is that by
ignoring the low-level implementation and sacrificing some
timing information, the high-level cosimulation framework
can greatly speed up the simulation. This greatly speeds up
the energy estimation process. Most importantly, the sim-
ulation results gathered during the high-level cosimulation
process can be used to estimate the switching activities of the
corresponding low-level implementations, and can be used
in the second step of the energy estimation process to derive
rapid and accurate energy estimates of the complete system.

It can be argued that urging cycle accuracy early, the de-
sign process prevents efficient design space exploration as
cycle accuracy is usually not required in early hardware-
software partitioning and in the development of software
drivers. Our cosimulation framework only maintains cycle
accuracy at the instruction level for software execution and
arithmetic level for hardware execution. The cosimulation
environment presents a view similar to the combination of
the architects view and programmers view in transaction level
modeling (TLM). Kogel et al. points out in [19] that “there is
usually no need for 100% timing accuracy since the impact of
an architecture change is on a much bigger scope than a single
clock cycle. Still an accuracy of 70–80% needs to be maintained
to ensure the quality of the analysis results.” Many state-of-the-
art high-level modeling environments for digital signal pro-
cessing systems, control systems, and so forth, enforce such
cycle accuracy in their modeling process. Examples include
the concept of high-level simulation clocks within the Mat-
lab/Simulink and Ptolemy modeling environments. Com-
pared with System C implementations of the transaction-
level models, our design and cosimulation framework is
based on visual data-flow modeling environments and thus
is more suitable for describing embedded systems.

The architecture of the cosimulation environment is il-
lustrated in Figure 3. The low-level implementation of the
FPGA execution platform consists of three major compo-
nents: the soft processor (for executing programs), customized
hardware peripherals (hardware accelerators for parallel exe-
cution of some specific computations), and communication
interfaces (for exchanging data and control signals between
the processor and the customized hardware components).
High-level abstractions are created for each of the three ma-
jor components. The high-level abstractions are simulated

using their corresponding simulators. The hardware and
software simulators are tightly integrated into our cosim-
ulation environment and concurrently simulate the high-
level behavior of the hardware-software execution platform.
Most importantly, the simulation among the integrated sim-
ulators is synchronized at each clock cycle and provides
cycle-accurate simulation results for the complete hardware-
software execution platform. Once the high-level design pro-
cess is completed, the application designer specifies the re-
quired low-level hardware bindings for the high-level oper-
ations (e.g., binding the embedded multipliers to multipli-
cation arithmetic operations). Finally, register-transfer/gate
level (“low-level”) implementations of the complete plat-
form with corresponding high-level behavior can be auto-
matically generated based on the high-level abstraction of the
hardware-software execution platforms.

3.1.1. Cycle-accurate instruction-level simulation of
programs running on the processor

We employ cycle-accurate instruction-level simulation mod-
els to simulate the execution of the instructions on a soft
processor. These simulation models provide cycle-accurate
simulation information regarding the execution of the in-
structions of the target program. With MicroBlaze [4], for
example, the cycle-accurate instruction-set simulator records
the number of times that an instruction passes the multiple
execution stages, as well as the status of the soft processor,
on a cycle-accurate basis. Most importantly, as we show in
Section 4.2.1, such cycle-accurate instruction-level informa-
tion can be used to derive rapid and accurate energy estima-
tion.

3.1.2. Cycle-accurate arithmetic level simulation of
customized hardware peripherals

Arithmetic level simulation is performed to simulate the cus-
tomized hardware peripherals attached to the processors.
By “arithmetic level,” we mean that only the arithmetic as-
pects of the hardware-software execution are captured by
the coimulation environment. For example, low-level imple-
mentations of multiplication on Xilinx Virtex-II FPGAs can
be realized using either slice-based multipliers or embedded
multipliers.
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3.1.3. Maintenance of cycle accuracy throughout
the cosimulation process

For each simulation clock cycle, the high-level behavior of
the complete FPGA hardware platform predicted by the
cycle-accurate cosimulation environment should match with
the behavior of the corresponding low-level implementation.
When simulating the execution of a program on a soft pro-
cessor, cycle-accurate cosimulation should take into account
the number of clock cycles required for completing a spe-
cific instruction (e.g., the multiplication instruction of the
MicroBlaze processor takes three clock cycles to finish) and
the processing pipeline of the processor. Also, when simulat-
ing the execution of customized hardware peripherals, cycle-
accurate simulation should take into account delays in the
number of clock cycles caused by the processing pipelines
within the customized hardware peripherals. Our high-level
simulation environment ignores low-level implementation
details, and only focuses on the arithmetic behavior of the de-
signs. By doing so, the hardware-software cosimulation pro-
cess can be greatly sped up. In addition, cycle accuracy is
maintained between the hardware and software simulators
during the cosimulation process. Thus, the instruction pro-
filing information and the low-level switching activity infor-
mation, which are used in the second step for energy estima-
tion, can be accurately estimated from the high-level cosim-
ulation process.

3.2. Step 2: rapid energy estimation

In the second step, the information gathered during the high-
level cosimulation process is used for rapid energy estima-
tion. The types and the numbers of instructions executed on
soft processors are obtained from the cycle-accurate instruc-
tion simulation process. The instruction execution informa-
tion is used to estimate the energy dissipation of the pro-
grams running on the soft processor. For customized hard-
ware implementations, the switching activities of the low-
level implementations are estimated by analyzing the switch-
ing activities of the arithmetic level simulation results. Then,
with the estimated switching activity information, energy
dissipation of the hardware peripherals is estimated by uti-
lizing a domain-specific energy performance modeling tech-
nique proposed in [20]. Energy dissipation of the complete
system is calculated as the sum of the energy dissipation of
the software and hardware implementations.

3.2.1. Instruction-level energy
estimation for software execution

An instruction-level energy estimation technique is em-
ployed to estimate the energy dissipation of the software
execution on the soft processor. A per-instruction energy
lookup table is created, which stores the energy dissipation
of each type of instruction for the specific soft processor.
The types and the number of instructions executed when the
program is running on the soft processor are obtained dur-
ing the high-level hardware-software cosimulation process.
By querying the instruction energy lookup table, the energy

dissipation of these instructions is obtained. The energy dis-
sipation of the program is calculated as the sum of the energy
dissipations of all of the instructions.

3.2.2. Domain-specific modeling-based energy
estimation for hardware execution

The energy dissipation of the customized hardware periph-
erals is estimated through domain-specific energy perfor-
mance modeling presented in [20]. Domain-specific mod-
eling is proposed to address the challenge of high-level FPGA
energy performance modeling. FPGAs allow for implement-
ing designs using a variety of architectures and algorithms.
These architectures and algorithms use a different amount of
logic components and interconnect. While these tradeoffs of-
fer a great design flexibility, they prevent energy performance
modeling using a single high-level model. For example, ma-
trix multiplication on an FPGA can employ a single proces-
sor or a systolic architecture. An FFT on an FPGA can adopt
a radix-2-based or a radix-4-based algorithm. Each architec-
ture and algorithm would have different energy dissipation.

Domain-specific modeling (DSM) is a hybrid (top-down
followed by bottom-up) modeling approach. It starts with
a top-down analysis of the algorithms and the architec-
tures for implementing a kernel. Through top-down anal-
ysis, the various possible low-level implementations of the
kernel are grouped into domains, depending on the archi-
tectures and algorithms used. This DSM technique enforce a
high-level architecture for the implementations belonging to
the same domain. With such enforcement, high-level model-
ing within the domain becomes possible. Analytical formu-
lation of energy functions are derived within each domain
to capture the energy behavior of the corresponding imple-
mentations. Then, a bottom-up approach is used to estimate
the constants of these analytical energy functions for the
identified domains through low-level sample implementa-
tions. This includes profiling individual system components
through low-level simulations, hardware experiments, and so
forth. These domain-specific energy functions are platform-
specific. That is, the constants in the energy functions would
have different values for different FPGA platforms. During
the application development process, these energy functions
are used for rapid energy estimation of hardware implemen-
tations belonging to a particular domain.

The domain-specific models can be hierarchical. The en-
ergy functions of a kernel can contain the energy functions
of the subkernels that constitute the kernel. Characteristics
of the input data (e.g., switching activities) can have consid-
erable impact on energy dissipation and are also inputs to the
energy functions. This characteristic information is obtained
through low-level simulation, or through high-level cosimu-
lation described in Section 4.1. See [20] for more details re-
garding the domain-specific modeling technique.

4. AN IMPLEMENTATION

To illustrate our approach, an implementation of our rapid
energy estimation technique based on Matlab/Simulink is
described in the following sections.



6 EURASIP Journal on Embedded Systems

Software programs
(executable files compiled

from the input C code)

Cycle-accurate instruction set
simulator for soft processor

(e.g. MicroBlaze)

Data exchange and
synchronization

Simulation of customized
hardware peripherals

Simulation of software programs

Design of customized
hardware peripherals

Simulink block
for soft processor
(e.g. MicroBlaze)

Matlab/Simulink design and
modeling environment

Figure 4: An implementation of the hardware-software cosimulation environment based on Matlab/Simulink.

4.1. Step 1: cycle-accurate high-level cosimulation

An implementation of the high-level cosimulation frame-
work presented in Section 3.1 is shown in Figure 4. The four
major functionalities of our Matlab/Simulink-based cosimu-
lation environment are described as follows.

4.1.1. Cycle-accurate simulation of the programs

The input C programs are compiled using the compiler for
the specific processor (e.g., the GNU C compiler mb-gcc
for MicroBlaze) and translated into binary executable files
(e.g., .ELF files for MicroBlaze). These binary executable
files are then simulated using a cycle-accurate instruction
set simulator for the specific processor. Taking the Micro-
Blaze processor as an example, the executable .ELF files are
loaded into mb-gdb, the GNU C debugger for MicroBlaze.
A cycle-accurate instruction set simulator for the Micro-
Blaze processor is provided by Xilinx. The mb-gdb debugger
sends instructions of the loaded executable files to the Micro
Blaze instruction set simulator and performs cycle-accurate
simulation of the execution of the programs. mb-gdb also
sends/receives commands and data to/from Matlab/Simulink
through the Simulink block for the soft processor and in-
teractively simulates the execution of the programs in con-
currence with the simulation of the hardware designs within
Matlab/Simulink.

4.1.2. Simulation of customized hardware peripherals

The customized hardware peripherals are described using
the Matlab/Simulink-based FPGA design tools. For example,
System Generator supplies a set of dedicated Simulink blocks
for describing parallel hardware designs using FPGAs. These
Simulink blocks provide arithmetic-level abstractions of the
low-level hardware components. There are blocks that rep-
resent the basic hardware resources (e.g., flip-flop-based reg-
isters, multiplexers), control logic, mathematical functions,
memory, and proprietary (intellectual property IP) cores
(e.g., the IP cores for fast Fourier transform and finite im-
pulse filters). For example, the Mult Simulink block for mul-
tiplication provided by System Generator captures the arith-
metic behavior of multiplication by presenting at its output
port the product of the values presented at its two input

ports. The low-level design tradeoff of using either embed-
ded or slice-based multipliers is not captured in its arith-
metic level abstraction. The application designer assembles
the customized hardware peripherals by dragging and drop-
ping the blocks from the block set to his/her designs and
connecting them via the Simulink graphic interface. Simu-
lation of the customized hardware peripherals is performed
within Matlab/Simulink. Matlab/Simulink maintains a simu-
lation timer to keep track of the simulation process. Each unit
of simulation time counted by the simulation timer equals
one clock cycle experienced by the corresponding low-level
implementations. Finally, once the design process in Mat-
lab/Simulink completes, the low-level implementations of
the customized hardware peripherals are automatically gen-
erated by the Matlab/Simulink-based design tools.

4.1.3. Data exchange and synchronization
among the simulators

The soft processor Simulink block is responsible for exchang-
ing simulation data between the software and hardware sim-
ulators during the cosimulation process. Matlab/Simulink
provides Gateway In and Gateway Out Simulink blocks
for separating the simulation of the hardware designs de-
scribed by System Generator from the simulation of other
Simulink blocks (including the MicroBlaze Simulink blocks).
These Gateway In and Gateway Out blocks identify the
input/output communication interfaces of the customized
hardware peripherals. For the MicroBlaze processor, the
Simulink MicroBlaze block sends the values of the proces-
sor registers stored in the MicroBlaze instruction set simu-
lator to the Gateway In blocks as input data to the hardware
peripherals. Vice versa, the Simulink MicroBlaze block col-
lects the simulation output of the hardware peripherals from
Gateway Out blocks and use the output data to update the
values of the processor registers stored in the MicroBlaze in-
struction set simulator. The Simulink block for the soft pro-
cessor also simulates the communication interfaces between
the soft processor and the customized hardware peripher-
als described in Matlab/Simulink. For example, the Simulink
MicroBlaze block simulates the communication protocol and
the FIFO buffers for communication through Xilinx dedi-
cated (fast simplex link FSL) interfaces [4].
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Figure 5: Flow of generating the instruction energy lookup table.

The Simulink soft processor block maintains a global
simulation timer which keeps track of the simulation time
experienced by the hardware and software simulators. When
exchanging the simulation data between the simulators, the
Simulink soft processor block takes the number of clock cy-
cles required by the processor and the customized hardware
peripherals into account. This process considers both the in-
put data and the delays caused by transmitting the data be-
tween them. Then, the Simulink block increases the global
simulation timer accordingly. By doing so, the hardware and
software simulations are synchronized on a cycle-accurate
basis.

4.2. Step 2: rapid energy estimation

The energy dissipation of the complete system is obtained by
summing up energy dissipation of the software and the hard-
ware. These values are estimated separately by utilizing the
activity information gathered during the high-level cosimu-
lation process.

4.2.1. Instruction-level energy estimation for
software execution

We use the MicroBlaze processor to illustrate the creation
of the instruction energy lookup table. The overall flow for
generating the lookup table is illustrated in Figure 5. We de-
veloped sample programs that target each instruction in the
MicroBlaze processor instruction set by embedding assembly
code into the sample C programs. In the embedded assem-
bly code, we repeatedly execute the instruction of interest for
a certain amount of time with more than 100 different sets
of input data and under various execution contexts. Model-
Sim was used to perform low-level simulation for executing
the sample programs. The gate-level switching activities of
the device during the execution of the sample programs are
recorded by ModelSim as simulation record files (.vcd files).
Finally, a low-level energy estimator such as XPower was used
to analyze these simulation record files and estimate energy
dissipation of the instructions of interest. See [18] for more
details on the construction of instruction-level energy esti-
mators for FPGA configured soft processors.

Class A
estimate()

Class A(N)
estimate()

Class A(1)
estimate()

Class A(2)
estimate()

Class B(1)
estimate()

Class B(2)
estimate()

Domain 1 Domain 2

Domain N

Figure 6: Python classes organized as domains.

4.2.2. Domain-specific modeling-based energy
estimation for hardware execution

The energy dissipation of the customized hardware periph-
erals is estimated using the domain-specific energy modeling
technique discussed in Section 3.2.2. In order to support this
modeling technique, the application designer must be able to
group different designs of the kernels into domains and as-
sociate the performance models identified through domain-
specific modeling with the domains. Since the organization
of the Matlab/Simulink block set is inflexible and is difficult
to reorganize and extend, we map the blocks in the Simulink
block set into classes in the object-oriented Python scripting
language [21] by following some naming rules. For exam-
ple, block xbsBasic r3/Mux, which represents hardware mul-
tiplexers, is mapped to a Python class CxlMul. All the design
parameters of this block, such as inputs (number of inputs)
and precision (precision), are mapped to the data attributes
of its corresponding class and are accessible as CxlMul.inputs
and CxlMul.precision. Information on the input and output
ports of the blocks is stored in data attributes ips and ops.
By doing so, hardware implementations are described using
Python language and are automatically translated into corre-
sponding designs in Matlab/Simulink. For example, for two
Python objects A and B, A.ips [0 : 2] = B.ops [2 : 4] has the
same effect as connecting the third and fourth output ports
of the Simulink block represented by B to the first two input
ports of the Simulink block represented by A.

After mapping the block set to the flexible class library in
Python, reorganization of the class hierarchy according to the
architectures and algorithms represented by the classes be-
comes possible. Considering the example shown in Figure 6,
Python class A represents various implementations of a ker-
nel. It contains a number of subclasses A(1), A(2), . . . , A(N).
Each of the subclasses represents one implementation of the
kernel that belongs to the same domain. Energy performance
models identified through domain-specific modeling (i.e.,
energy functions shown in Figure 7) are associated with these
classes. Input to these energy functions is determined by the
attributes of Python classes when they are instantiated. When
invoked, the estimate() method associated with the Python
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Figure 8: CORDIC processor for division (P = 4).

classes returns the energy dissipation of the Simulink blocks
calculated using the energy functions.

As a key factor that affects energy dissipation, switch-
ing activity information is required before these energy func-
tions can accurately estimate energy dissipation of a design.
The switching activity of the low-level implementations is
estimated using the information obtained from the high-
level cosimulation described in Section 4.1. For example, the
switching activity of the Simulink block for addition is esti-
mated as the average switching activity of the two input data
and the output data. The switching activity of the process-
ing elements (PEs) of the (coordinate rotation digital com-
puter CORDIC) design [22] shown in Figure 8 is calculated
as the average switching activity of all the wires that con-
nect the Simulink blocks contained by the PEs. As shown
in Figure 9, high-level switching activities of the process-
ing elements (PEs) shown in Figure 8 obtained within Mat-
lab/Simulink coincide with their power consumption ob-
tained through low-level simulation. Therefore, using such
high-level switching activity estimates can greatly improve
the accuracy of our energy estimates. Note that for some
Simulink blocks, their high-level switching activities may
not coincide with their power consumption under some
circumstances. For example, Figure 10 illustrates the power
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Figure 10: High-level switching activities and power consumption
of slice-based multipliers.

consumption of slice-based multipliers for input data sets
with different switching activities. These multipliers demon-
strate “ceiling effects” when switching activities of the input
data are larger than 0.23. Such “ceiling effects” are captured
when deriving energy functions for these Simulink blocks in
order to ensure the accuracy of our rapid energy estimates.

5. ILLUSTRATIVE EXAMPLES

To demonstrate the effectiveness of our approach, we eval-
uate the design of a CORDIC processor for division and
a block matrix multiplication algorithm. These designs are
widely used in systems such as software-defined radio, where
energy is an important performance metric [6]. We focus on
MicroBlaze and System Generator in our illustrative examples
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Figure 11: Matrix multiplication with customized hardware for
multiplying 2× 2 matrix blocks.

due to their easy availability. Our approach is also applicable
to other soft processors and other design tools.

(i) CORDIC processor for division

The architecture of the CORDIC processor is shown in
Figure 8. The customized hardware peripheral is imple-
mented as a linear pipeline of P processing elements (PEs).
Each of the PEs performs one CORDIC iteration. The soft-
ware program controls the data flowing through the PEs and
ensures that the data are processed repeatedly until the re-
quired number of iterations is completed. Communication
between the processor and the hardware implementation is
through the FSL interfaces. It is simulated using our MicroB-
laze Simulink block. Our implementation uses 32-bit data
precision.

(ii) Block matrix multiplication

Smaller matrix blocks of matrices A and B are multi-
plied using a customized hardware peripheral. As shown in
Figure 11, data elements of a matrix block from matrix B
(e.g., b11, b21, b12 and b22) are fed into the hardware periph-
eral, followed by data elements of a matrix block from ma-
trix A. The software program running on MicroBlaze con-
trols the data to be sent to and retrieved from the attached
customized hardware peripheral, performs part of the com-
putation (e.g., accumulating the multiplication results from
the hardware peripheral), and generates the result matrix.

In our experiments, the MicroBlaze processor is config-
ured on a Xilinx Spartan-3 xc3s400 FPGA [4]. The proces-
sor, the two (local memory bus LMB) interface controllers
and the customized hardware peripherals operate at 50 MHz.
(embedded development kit EDK) 6.3.02 [4] is used to de-
scribe the software execution platform and for compiling
software programs. System Generator 6.3 is used to describe
the customized hardware peripherals. ISE (integrated soft-
ware environment) 6.3.02 [4] is used for synthesizing and
implementing (placing and routing) the complete applica-
tions.

Power measurement is performed using a Spartan-3
FPGA board from Nu Horizons [23] and a SourceMeter
2400 instrument (a programmable power source with the

measurement functions of a digital multimeter) from Keith-
ley [24]. Except for the Spartan-3 FPGA device, all the other
components on the prototyping board (e.g., the power sup-
ply indicator, the SRAM chip) are kept in the same state dur-
ing measurement. We assume that the changes in power con-
sumption of the board are mainly caused by the FPGA de-
vice. We fix the input voltage and measure the changes in
input current to the FPGA board. The dynamic power con-
sumption of the designs is calculated based on the changes in
input current. Note that static power (power consumption of
the device when there is no switching activity) is ignored in
our experimental results, since it is fixed in the experiments.

The simulation time and energy estimation for imple-
mentations of the two numerical computation applications
are shown in Table 1. Our high-level cosimulation environ-
ment achieves simulation speedups between 5.6x and 88.5x
compared with low-level timing simulation using Model-
Sim. The low-level timing simulation is required for low-
level energy estimation using XPower. The speed of the cycle-
accurate high-level cosimulation is the major factor that de-
termines the estimation time and varies depending on the
hardware-software mapping and scheduling of the tasks that
constitute the application. This is due to two main rea-
sons. One reason is the difference in simulation speeds of
the hardware simulator and the software simulator. Table 2
shows the simulation speeds of the cycle-accurate Micro-
Blaze instruction set simulator, the Matlab/Simulink simu-
lation environment for simulating the customized hardware
peripherals, and ModelSim for timing-based low-level sim-
ulation. Cycle-accurate simulation of software executions is
more than 4 times faster than cycle-accurate arithmetic level
simulation of hardware execution using Matlab/Simulink. If
more tasks are mapped to execute on the customized hard-
ware peripherals, the overall simulation speed of the pro-
posed high-level cosimulation approach is further slowed
down. Compared with low-level simulation using ModelSim,
our Matlab/Simulink-based implementation of the cosimu-
lation approach can potentially achieve simulation speedups
from 29x to more than 114x for the chosen applications. A
reason for the variance is the frequency of data exchanges
between the software program and the hardware peripher-
als. Every time the simulation data is exchanged between the
hardware simulator and the software simulator, the simula-
tion performed within the simulators is stalled and later re-
sumed. This adds quite some extra overhead to the cosimu-
lation process. There are close interactions between the hard-
ware and software execution for the two numerical computa-
tion applications considered in the paper. Thus, the speedups
achieved for the two applications are smaller than the maxi-
mum speedups that can be achieved in principal.

If we consider the implementation time (including syn-
thesizing, placing-and-routing), the complete system, and
generating the post place-and-route simulation models (re-
quired by the low-level energy estimation approaches) our
high-level cosimulation approach would lead to even greater
simulation speedups. For the two numerical applications, the
time required to implement the complete system and gener-
ate the post place-and-route simulation models is about 3
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Table 1: High-level/low-level simulation time and measured/estimated energy performance of the CORDIC-based division application and
the block matrix multiplication application.

Designs
Simulation time Energy estimation

High-level Low-level∗ High-level Low-level Measured

CORDIC with N = 24, P = 2 6.3 sec 35.5 sec 1.15 µJ (9.7%) 1.19 µJ (6.8%) 1.28 µJ

CORDIC with N = 24, P = 4 3.1 sec 34.0 sec 0.69 µJ (9.5%) 0.71 µJ (6.8%) 0.76 µJ

CORDIC with N = 24, P = 6 2.2 sec 33.5 sec 0.55 µJ (10.1%) 0.57 µJ (7.0%) 0.61 µJ

CORDIC with N = 24, P = 8 1.7 sec 33.0 sec 0.48 µJ (9.8%) 0.50 µJ (6.5%) 0.53 µJ

12× 12 matrix mult. (2× 2 blocks) 99.4 sec 8803 sec 595.9 µJ (18.2%) 675.3 µJ (7.3%) 728.5 µJ

12× 12 matrix mult. (4× 4 blocks) 51.0 sec 3603 sec 327.5 µJ (12.2%) 349.5 µJ (6.3%) 373.0 µJ

Note: ∗ timing-based post place-and-route simulation. The times for placing-and-routing and generating simulation models are not included.

Table 2: Simulation speeds of the hardware-software simulators considered in this paper.

Instruction set simulator Simulink(1) ModelSim(2)

Simulated clock cycles per second >10000 254.0 8.7

Note: (1) only considers simulation of the customized hardware peripherals; (2) timing-based post place-and-route simulation. The time for generating the
simulation models of the low-level implementations is not accounted for.

hours. Thus, our high-level simulation-based energy estima-
tion technique can be about 200x to 6500x faster than those
based on low-level simulation for these two numerical com-
putation applications.

For the hardware peripheral used in the CORDIC divi-
sion application, our energy estimation is based on the en-
ergy functions of the processing elements shown in Figure 8.
For the hardware peripheral used in the matrix multipli-
cation application, energy estimation is based on the en-
ergy functions of the multipliers and the accumulators. As
one input to these energy functions, we calculate the aver-
age switching activity of all the input/output ports of the
Simulink blocks during arithmetic level simulation. Table 1
shows the energy estimates obtained using our high-level
simulation-based energy estimation technique. Energy es-
timation errors ranging from 9.5% to 18.2% and 11.6%
on average are achieved for these two numerical computa-
tion applications compared with measured results. Low-level
simulation-based energy estimation using XPower achieves
an average estimation error of 6.8% compared with mea-
sured results.

6. CONCLUSIONS

A two-step rapid energy estimation technique for hardware-
software codesign using FPGAs was proposed in this paper.
An implementation of the proposed energy estimation tech-
nique based on Matlab/Simulink and the design of two nu-
merical computation applications were provided to demon-
strate its effectiveness. One major approximation that affects
the energy estimation accuracy of the proposed technique is
a failure to consider glitches in high-level simulation. This

limitation creates two scenarios that causes our technique to
fail to give energy estimates with satisfactory errors. One sce-
nario occurs when an application runs close to its maximum
operating frequency. The other scenario occurs when an ap-
plication has long combinational circuit paths. In both sce-
narios, numerous glitches can occur in the circuits, causing
high energy estimation errors for the proposed technique.
The integration of high-level glitch power estimation tech-
niques is an important extension of the proposed technique.
Another important extension of our work is to provide con-
fidence level information of the energy estimates. Provid-
ing such information is desired in the development of many
practical systems.
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1. INTRODUCTION

Field-programmable gate arrays (FPGAs) now handle most
digital signal processing functions in an embedded plat-
form. However, many embedded platforms, such as hand-
held devices, distributed sensors, and satellites, demand low
power in order to increase their functional lifetime. While
SRAM-based FPGAs have a short design cycle, steadily de-
creasing cost, and growing performance, power consump-
tion remains a concern [1]. The trend from one FPGA de-
vice family to another is the number of configurable logic
blocks (CLBs) and maximum operating frequency scale ex-
ponentially, while corresponding decreases in operating volt-
age have been much slower to arrive, resulting in an expo-
nentially increasing maximum power consumption per de-
vice [2]. Therefore, power must be considered at every level,
from VLSI issues such as transistor layout and leakage cur-
rent, to the software that determines how efficiently a user’s
design is implemented on an FPGA.

There have been many FPGA power reduction ap-
proaches addressing different design levels. Several tech-
niques for low power FPGA design have appeared in litera-
ture addressing the VLSI design of an FPGA [2–4]. Research
has also considered various synthesis-level power optimiza-
tions, such as technology mapping to LUT-based FPGAs
techniques [5] or reducing glitching power through pipelin-
ing [6]. It has also been shown that power can be addressed

in the suite of computer-aided design (CAD) algorithms that
place and route an end user’s circuit onto the FPGA fabric
[7].

For our research, we are considering techniques that yield
immediate results on today’s devices and interoperate with
commercial off-the-shelf (COTS) CAD tools. We further re-
strict our focus to techniques that do not modify the func-
tional behavior of the circuit and guarantee that the user’s
original timing, or throughput, constraints are met. In this
paper, we propose a novel power optimization methodology
that converts power optimization goals into constraints com-
pliant with throughput-based COTS PAR tools, minimizing
the power consumption of a design’s routing interconnect.

In today’s FPGAs about 50–70% of total power is dis-
sipated in the interconnection network [8]. The dynamic
power of nets is characterized by

Pdynamic =
∑

i

(
Ci × Fi ×V 2), (1)

where Ci and Fi are the capacitance and average toggle rate
of the ith net, and V is the internal voltage. For a given net,
the dynamic power can be reduced by diminishing its capac-
itance, or length. Nets with high toggle rates and/or high ca-
pacitance therefore are good potential targets for decreasing
the overall power and serve as the motivation of the power
optimization schemes presented.
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In this work, we first introduce the Low-Power Intelligent
Tool Environment (LITE) created for this research. This en-
vironment allows the development and experimentation of
power models, tracking dynamic power consumption during
simulation, and power estimation at the synthesis level, while
providing an infrastructure to rapidly design and execute
new power optimization algorithms. Using LITE, four power
optimization approaches were created and implemented that
generate constraints compliant with the COTS Xilinx PAR
tools.

The rest of the paper is organized as follows. In Section 2,
we introduce the relevant background on the Xilinx Virtex-
II FPGA microarchitecture as it pertains to routing inter-
connects and power consumption. Section 3 addresses the
software, first describing the Xilinx CAD tool flow and then
the infrastructure of the Low-Power Intelligent Tool Envi-
ronment (LITE). Section 4 introduces the power optimiza-
tion algorithms and their experimental results. In Section 5,
the results of combining the power optimization methods
are presented. In Section 6, we extend our software results
to a hardware testbed and validate our approach. Finally,
Section 7 concludes the paper.

2. FPGA DEVICE POWER CHARACTERISTICS

In order to create efficient power optimization algorithms,
the underlying FPGA architecture must be well understood.
Though the techniques presented here work for a variety of
FPGA microarchitectures, we will limit our focus in this pa-
per to the Xilinx Virtex-II FPGA. The Virtex-II FPGA devices
are comprised of input/output blocks (IOBs), located on the
edges of FPGA chips, and configurable logic blocks (CLBs)
organized as a two-dimensional array inside the ring of IOBs
[9]. Each CLB includes four slices and an interconnect block.
Slices provide functional elements for combinational and
synchronous logic which can be configured as ROMs, LUTs,
or SRLs, flip-flops, or other circuitry. The logic of a user’s cir-
cuit will be considered static after synthesis and capacitance
information of each microarchitecture feature can be found
in literature [8] or in software by exporting information from
Xilinx XPower power analysis tool.

In Virtex-II FPGAs, CLBs connect to the global routing
matrix through the interconnect fabric. Global routing re-
sources are comprised of 4 types of lines: long lines, hex lines,
double lines, and direct connect lines, in the order of their
length. Interconnect capacitance can also be found by ex-
porting results from the Xilinx XPower tool. It is important
to note that a net in a user’s circuit may have any combina-
tion of routing, from carry-chains and internal CLB routing
with minimal capacitance, to several vertical and horizontal
hops along longer interconnect routes. A quick glance at the
interconnect capacitance in Table 1 shows that a reduction
by only one interconnect length can yield about a 30% re-
duction in capacitance.

The clocking infrastructure is also critical to consider
when optimizing power. With 100% toggle rates and ex-
tremely high fanouts, these nets typically consume the most
power in a design, even with dedicated clocking lines. The

Clock
quadrant NW NE

SW SE

Clock trunk

Clock branch

Clock region

Figure 1: Clock tree and clock regions in XC2V6000 FPGA.

Table 1: Interconnect capacitance.

Interconnect line Capacitance (pF)

Direct line 9.4

Double line 13.2

Hex line 18.4

Long line 26.1

Virtex-II architecture supports 16 clocks, and 8 global clocks
can be used in each quadrant of the device. In each quad-
rant, clocks are organized in clock regions. Figure 1 depicts
the clock tree and clock regions in the XC2V6000 FPGA de-
vice.

Although we are focusing on the Virtex-II architecture,
the algorithms presented here can be adapted to other archi-
tectures as well, as long as cost tables such as those in Table 1
are adjusted to account for minor architecture differences.

3. SOFTWARE INFRASTRUCTURE

This section discusses the software infrastructure developed
to rapidly analyze FPGA power consumption and implement
power optimization algorithms. As the developed tools inter-
operate with the COTS CAD tool flow, the Xilinx PAR tools
will be discussed first with respect to power and the Low-
Power Intelligent Tool Environment (LITE) is described af-
terwards. Finally, the experiment framework and validation
methodology are presented.

3.1. Xilinx tool flows

The Xilinx tool flow of design implementation includes the
following steps [10].

(i) Translate, which merges the incoming netlists and con-
straints into a Xilinx design file.

(ii) Map, which fits the design into the available resources
on the target device.

(iii) Place and Route, which places and routes the design to
the timing constraints.

After Place and Route, the resulting netlist can be in-
put into the Xilinx XPower tool to create a detailed power
consumption report. HDL models can be created after PAR
for back-annotated simulation to increase the precision of
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Figure 2: LITE tool flow.

XPower reports. All experiments were run using the Xilinx
ISE 6.3 toolset.

3.2. LITE tool flow

The Low-Power Intelligent Tool Environment (LITE) was
created to facilitate power research by elevating power to a
first-order design parameter. It uses calibration, modeling,
and estimation techniques to provide automated power esti-
mation at the higher, logic-based EDIF level, where it is eas-
ier for a circuit designer to relate the analysis back to their
HDL input. In this work, LITE is expanded to incorporate
power optimization algorithms that generate UCF file con-
straints to be passed along to the Xilinx PAR tools as shown
in Figure 2.

LITE consists of three components designed to expand
the existing COTS power analysis capabilities and experi-
ment with power optimization algorithms: power calibra-
tion, power modeling, and power constraint generation. The
LITE tool infrastructure is an extension of the JHDL envi-
ronment. As presented in [11], the JHDL environment pro-
vides a high-level tool suite for querying circuit components,
running simulations, and tracking signal transitions. LITE
builds upon these capabilities to add knowledge about circuit
component and interconnect capacitance, monitor a circuit’s
power consumption during simulation, sort the most power
intensive modules within a circuit, and plot various power
consumption metrics of the design. A separate EDIF import
tool was developed that enables FPGA designs generated by
any 3rd party synthesis tool to be imported into LITE. Simu-
lation results can be obtained by either importing a VCD file
or writing a JHDL test bench.

The power calibration component interacts with the Xil-
inx CAD tools to extract the relevant parameters for power
modeling: capacitance, toggle rates, fanout, and power. Xil-
inx XPower reports contain detailed analysis of placed and
routed circuits’ power characteristics, and this information
can be imported to LITE to obtain the capacitance values of

every microarchitectural component, logic element, and in-
terconnect. LITE can then use this information to track and
display dynamic power consumption during simulation, or
use these values as device power libraries for post-synthesis
power modeling and estimation.

The power modeling component allows detailed power
analysis of a user’s circuit both at the post-synthesis level
and the placed and routed level. Post-synthesis power mod-
eling is achieved by combining known logic component ca-
pacitance values with routing interconnect length projection
techniques developed in [11]. Exact routing capacitances
cannot be known until PAR has been completed, however
these estimation models are extremely useful in pinpointing
power consumption hot spots early on in the design flow and
prioritizing nets for power optimization during the PAR pro-
cess.

By leveraging the JHDL/EDIF infrastructure, this tool
suite also enables users to import their designs into the LITE
environment, run simulations, track signal transition rates
and power consumption over time, as in Figure 3, sort hi-
erarchy modules by power consumption, and cross-probe
power overlays with the schematic and waveform viewers
inherent to JHDL. Simulations and power analysis can be
performed at either the post-synthesis or placed and routed
netlist level and allows the direct comparison of the syn-
thesized circuit power against it’s placed and routed netlist
power.

The power optimization component utilizes the output
of the power analysis component to apply the power opti-
mization techniques discussed in Section 4. As mentioned
earlier, the power optimization techniques in LITE do not
modify design logic, but rather feed additional constraints to
the PAR tools such that the existing PAR algorithms can still
meet a user’s throughput specifications while also reducing
power. To support this, the power optimization component
is capable of inspecting the area, resources, and size of the tar-
geted FPGA device and the user’s circuit, reads in any existing
UCF file constraints, and prioritizes the original constraints.
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Table 2: Benchmark circuits.

Design Part number Original timing (MHz) Signal power (%) Logic power (%) Clock power (%) Baseline power (mW)

CRC XC2V80 16 28 42 30 31

FM XC2V250 55 43 45 12 102

VGA XC2V250
125

18 39 43 138
133.3

USBF XC2V500
238

33 30 37 82
105

PCI XC2V1000 100 10 33 57 39

Conv XC2V1000 66 23 55 22 163

DES3 XC2V2000 100 43 21 36 139

Mem XC2V6000 83 8 59 33 643

S1 XC2V6000

160

12 10 78 251
40

180

75

33

S2 XC2V6000
33

9 12 79 1020250

100

Figure 3: LITE simulation.

3.3. Experimental framework

The methodology for power optimization and power verifi-
cation can also be seen in Figure 2. To perform power opti-
mization, a user imports its design using the EDIF parser,
generates a power simulation using the LITE power mod-
eling component, and then generates a new UCF file using
the LITE power optimization component. The original, un-
altered EDIF file can then be fed through the Xilinx tools us-
ing the new constraints file. To measure the results, we use

the Xilinx XPower tool with placed and routed netlists and
the same value change dump (VCD) simulation data used as
inputs in the LITE power simulation stage.

In order to verify the developed power optimization al-
gorithms, a test suite of ten circuit benchmarks was utilized,
listed in Table 2. This suite represents a fairly wide taxon-
omy of applications, from glue logic (Mem) to cores (CRC,
FM, VGA, USBF, PCI, and DES3) to end-to-end applica-
tions (Conv, S1, and S2), spanning a wide range of device
sizes. Each circuit is mapped into the smallest device pos-
sible, such that underutilization does not skew results. All
designs also had UCF files specifying I/O pin locations and
minimum clocking requirements, shown in the 3rd column.
Multiple clocks are represented by multiple entries. Table 2
also shows the breakout of power consumed by signal, logic,
and clock elements and reveals that there is a mix of clock
dominant, signal dominant, and logic dominant designs. In
the final column, the baseline power, the internal dynamic
power of each circuit as reported by XPower is shown, that is,
the sum of the dynamic power consumed by logic elements,
clock nets, and signal nets. Figure 4 shows the slice/IOB uti-
lizations of these designs. Slice occupation ranges from 14%
to 86%, and IOB occupation from 11% to 90%, so there is a
fair representation of I/O bound as well as compute resource
bound circuits.

It should be noted that we have spot checked our re-
sults on hardware as well. Our power measurement testbed,
shown in Figure 5, is comprised of a PCI-DAS1200 ADC
which samples the current sensors connected to the isolated
internal voltage supply lines on an Osiris board’s XC2V6000
device and provides a resolution 2.7 mA. While actual power
consumption was difficult to verify due to variables such as
room temperature, device fabrication variances, and con-
servatism inherent in XPower’s capacitance reporting, the
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Figure 5: Power measurement testbed.

percentage power reduction between the optimized and
baseline versions remained constant between XPower soft-
ware reports and hardware measurements in experimental
testing.

4. POWER OPTIMIZATION TECHNIQUES

The power optimization techniques developed center around
the theme of creating timing and placement constraints that
interoperate with existing COTS PAR tools in order to pre-
serve a user’s throughput specifications while also reducing
power consumption. The timing and placement constraints
influence the COTS tools to use shorter, lower capacitance
interconnects. In this paper we provide an overview of four
power optimization techniques that each utilizes a different
constraint type to enact power optimization. The following
subsections explain each technique and present the experi-
mental results achieved.

4.1. Clock tree paring

For our first technique, we will focus on trying to reduce the
amount of power utilized by the clock nets. As Table 2 shows,
even though these nets utilize dedicated, specialized circuitry
within the FPGA, these few nets can contribute with 12% to
79% of the overall power consumption of a design. This is
due to the inherent high toggle rate, high fanout to hundreds
or thousands of synchronous logic elements, and long inter-
connects that span a data path from input to output often
across the entire device.

NW NE

SW SE

Trunk switch

Branch switch

Leaf switch

Figure 6: Clock net switch types.

The clock tree paring algorithm targets the clock power
by utilizing placement constraints to minimize the size of the
clock net tree utilized. As introduced in Section 2, in the Xil-
inx Virtex-II FPGAs, clock nets are distributed on dedicated
routing resources. Through FPGA editor and experimenta-
tion, we observe that clock network is like a tree, with the
main trunk traveling north to south in the middle of the chip,
and branches extending west and east into clock regions. The
number of clock regions varies depending on the size of the
device. The clock tree is gated such that completely unused
branches of the tree are effectively turned off. Therefore by
placing logic closer together, clocking power can be reduced
by gating more of the branches of the clock tree.

From our analysis, we found that there were three types
of gating switches, shown in Figure 6, which we will call
the trunk switch, branch switch, and leaf switch. The trunk
switch is located at the center of the chip. This type of switch
is used for turning on or off the upper- or lower-half of the
main clock trunks. When a clock net comes into the chip
from an input port or digital clock manager (DCM), it goes
to the center of the switch-fabric to be routed to the north,
or south, or both. Figure 7(a) shows two clock nets as the
examples: the clock net on the left is switched to both the
upper- and lower-half of the chip. The clock net on the right
is switched to the upper-part of the chip only. Figure 7(b)
depicts a branch switch. Each Virtex-II has multiple branch
switches, and the number varies depending on the size of the
device. The switches are located on the path of the main clock
trunks. They are responsible for transmitting the clock sig-
nals to the clock regions. The clock wire shown in Figure 7(b)
travels to both the left and right. The leaf switch is depicted
in Figure 7(c). As shown in Figure 7(d), a clock net in the
clock region includes a major branch and many subbranches
that connect to slices. The leaf switch turns on/off these
subbranches. By placing the flip-flops closer to each other,
clocking power can be reduced by leaving more branch/sub-
branch turned off.

The clock tree paring algorithm analyzes a user’s cir-
cuit, computes a minimum bound to contain all the logic
associated with a clock net, and generates area constraints
to specify where the associated clock logic may be placed.
The area constraint is rectangular, stretching north to south
around the clock main trunk. The size of the area is pro-
portional to a clock’s fanout. For multiple clock cases, the
LITE power analysis component is used to prioritize clocks
with higher-power consumption and place them closer to
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(a) (b) (c) (d)

Figure 7: (a) Trunk switch; (b) branch switch; (c) leaf switch; (d) clock net connected with FFs within a clock region.

Figure 8: Clock area constraints.

Original Optimized

Figure 9: Clock area optimization in S1.

the clock trunk, as depicted in Figure 8. It should be noted
that the clock groups do not have to be placed radially to the
main trunk to save power. Clock power savings, especially
in larger designs, come from clustering groups of flip-flops
to minimize the number of leaf switches that are activated.
In the cases that I/O timing is critical, flip-flop clusters can
be placed between the I/O pins and a central flip-flop mass
about the clock trunk, to pipeline and better preserve timing
constraints while also minimizing power. Figure 9 shows an
illustrative example of the distributions of one of the clock
trees in S1 before and after the clock optimization.

Table 3 shows the results for clock tree paring power op-
timization. It is interesting to note that even though the sig-
nal power increases in several cases, the clock power savings

Table 3: Clock tree paring results.

Design
Signal
power
reduction

Logic
power
reduction

Clock
power
reduction

Total
power
reduction

CRC 3.6% 0.0% 16.4% 5.9%

FM −3.0% 0.0% 36.0% 2.9%

VGA 6.4% 0.0% 26.5% 12.5%

USBF 2.1% 0.0% 26.8% 10.7%

PCI −5.1% 0.0% 34.2% 18.7%

Conv 4.0% 0.0% 18.2% 4.9%

DES3 −4.0% 0.0% 29.2% 8.6%

Mem −11.2% 0.0% 5.1% 0.7%

S1 −59.9% 0.0% 11.1% 10.7%

S2 −13.8% −0.1% 28.7% 19.4%

are dominate and almost all benchmarks show significant
overall power improvement by using this approach. As can
be expected, the test circuits not responding as well to this
approach (Mem, FM, Conv, and CRC) are considered logic
power dominant designs according to Table 2. The clock
power dominant designs (S2, PCI, VGA, S1, and USBF) are
much more responsive. It should also be noted that though
Figure 9 depicts a circuit with low device utilization for il-
lustrative purposes, the efficacy of this technique is more a
function of a circuit being clock power dominant than high-
or low-logic utilization. For example, S2, a clock power dom-
inant circuit, achieves the most significant power reduction
with a more than 80% device utilization, while Mem, the
lowest device utilization circuit in our test suite, yields the
least significant results.

4.2. N-terminal net colocation

N-terminal net colocation power optimization is targeted to
reduce the power consumed by signal nets. “Terminal” is
defined as the sum of the fanin and fanout of a net. For a
simplified case, a 2-terminal net is a net with a single fanout.
N-terminal net colocation restricts net terminals to be placed
in adjacent slices. As depicted in Figure 10, net terminals are
grouped in pairs, and for each pair, a constraint is used to
restrict the two terminals to be located close to each other,
and thus reducing the signal net length and power. From our
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Figure 10: N-terminal placement.

LITE calibration and analysis studies, we found that the Xil-
inx Virtex-II architecture has an east-west bias, meaning that
direct connection interconnected in the east-west direction
has less capacitance than direct connections in the north-
south direction, sometimes by a factor of up to 50%. So,
this algorithm is further enhanced to take advantage of this
particular microarchitecture design by prioritizing east-to-
west relative placement constraints. This algorithm can be
updated to reflect other FPGA architecture features as well.
The nets are sorted and prioritized by power consumption
based on simulations using the LITE power analysis environ-
ment to target high-capacitance and high toggle rate nets. In
high fanout cases where nets may belong to multiple terminal
groups, only the highest priority constraint is created.

Initial experimentation showed that this technique
worked well on some nets, however some nets that would
naturally be mapped by the COTS PAR tools to low capaci-
tance lines such as carry chains and internal slice nets were
now being routed on higher capacitance routing intercon-
nect lines due to the constraints. To avoid this, the algorithm
was enhanced to analyze the circuits and selectively avoid
putting constraints on certain nets. Several rules were devel-
oped to avoid overconstraining the designs as follows.

(i) Avoid nets that are a part of shift registers as the Xil-
inx slice contains low capacitance, dedicated connec-
tion between shift registers that are naturally used by
the PAR tools.

(ii) Avoid nets that are a part of carry-chains. The Virtex-II
architecture uses dedicated low capacitance carry logic
to cascade function generators and provide fast arith-
metic addition and subtraction.

(iii) Avoid nets that are mapped internally to slices as these
are also low capacitance routes. These nets can be iden-
tified as those between look-up tables (LUTs) and mul-
tiplexers, and between LUTs and inverters.

The results for the N-terminal net colocation algorithm
are depicted in Table 4. Here, we see that the overall power
savings is negligible and in a few cases actually becomes
worse. The nonzero values in the logic power reduction col-
umn show that in some cases slices are being packed more ef-
ficiently as desired, however in some designs the N-terminal
approach causes ripple effects in unconstrained nets, caus-
ing more slices to be utilized. While the constrained nets are
reduced, other nets belonging to multiple terminal groups
may be bumped out of internal slice mappings. Comparing

Table 4: N-terminal placement results.

Design
Signal
power
reduction

Logic
power
reduction

Clock
power
reduction

Total
power
reduction

CRC −9.8% 0.0% 0.0% −2.9%

FM −0.9% −0.5% 1.6% −0.4%

VGA 1.8% 0.2% 0.6% 0.7%

USBF −9.2% 0.4% −4.2% −4.5%

PCI 2.6% 0.1% −6.8% −3.8%

Conv 1.6% 0.0% −3.4% −0.4%

DES3 1.2% 0.0% −3.3% −0.7%

Mem 9.1% 0.0% −1.8% 0.4%

S1 −10.1% 0.3% −0.5% −0.6%

S2 −1.6% −1.4% 1.6% 1.0%

the signal power, clock power, and total power columns is in-
sightful as well. For a few circuits, CRC, USBF, and S1, there is
a significant reduction in signal power. Closer inspection re-
vealed that these circuits had relatively few high fanout nets.
In all cases however, clock power is still dominating and is
the main influence on total power.

4.3. Area minimization

Another approach to reducing signal power was area mini-
mization. The area minimization power optimization tech-
nique is based on the observation that routing interconnect
lengths highly depend on the placement of components. By
prioritizing the location in favor of power, high capacitance
signal lines with high fanout or high transition rates can be
grouped together to minimize the power consumed on long
interconnects. Constraining the area also has the added affect
of trimming the clock tree; however in this case the total area
is constrained and clock tree pruning is a residual affect.

This technique is expected to work well on circuits that
underutilize the logic available on the chip due to I/O bound
designs or poor device size selection. In these designs, the
COTS PAR tools place the circuits loosely over the whole
chip, doing the minimum to meet the user’s timing require-
ments, as it was designed to do. This behavior however causes
longer connection wires and hence increases the total net
power. By using area minimization constraints, a design is
compacted more tightly in a given area of a chip. Net lengths
are shortened and thus power is saved. In an effort to bal-
ance the north-south bias of the clock trunk with the east-
west bias of the direct connect signal wires, a rectangular area
placed at the center of a chip, with sides proportional to the
chip dimensions, is utilized. The size of the area is estimated
by analyzing and computing the slice count that each design
element needs.

Figure 11 shows an example of the results. On the left-
hand side, the circuit is placed loosely over the chip. After
using the area minimization power optimization, the circuit
is tightly located in an area at the center. It is worth mention-
ing that eventhough area minimization may have the same
effect on the placement of logic components as clock power
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Original Optimized

Figure 11: Area minimization in VGA.

optimization does, it utilizes different constraints. The clock
tree paring technique constrains the clock routing area, influ-
encing the placement of all the logic elements driven by the
clock. The area minimization technique explicitly restricts
the placement of all components, clocked or nonclocked.

The results of area minimization approach are shown in
Table 5, with all circuits showing a positive power reduction.
On closer examination the power savings mostly come due
to clock power reductions, due to residual clock tree mini-
mization effects similar to those developed in the clock tree
paring technique. This technique was unable to be used on
the S2 circuit, as this design occupies 87% of an XC2V6000
device and the area cannot be further minimized.

4.4. Slack minimization

Finally, the slack minimization technique seeks to optimize
the power on signal nets by tightening timing constraints
on power critical nets. The slack minimization algorithm as-
sumes that the PAR tools will leave each net at or just under
the user’s specified timing requirements, in many cases leav-
ing slack, or extra net length that could be further tightened
to reduce capacitance. For this algorithm slack is defined as

Slack = TSpec − TLogic − Tminwr , (2)

where TSpec is the user’s timing specification, TLogic is the tim-
ing delay of any combinatorial logic in between flip-flops on
the net, and Tminwr is the minimal wire timing delay. For ex-
ample, in the left-hand side of Figure 12, a flip-flop to flip-
flop path has two intermediate components, with 1 ns and 2
ns individual delay. The user’s specified clock is running at
100 MHz, that is, 10 ns in period. Therefore, the slack of the
path is 7 ns. Without additional constraints, the PAR tools
will typically meet the maximum delay necessary to still meet
the constraints as it should, creating a wire delay of up to 7 ns.
If we allow 1 ns delay between each logic element, we can re-
duce the interconnect length to 3 ns and reduce the intercon-
nect capacitance.

The slack minimization technique uses the LITE analysis
component to prioritize high capacitance, high toggle rate
nets, calculate the slack, and tighten the timing constraints
on these nets allowing for only minimal wire length. In prac-
tice, nets with ample slack are typically those with two or less
levels of combinational logic between flip-flops.

1 ns 2 ns

2 ns 2 ns 3 ns

1 ns
2 ns

1 ns 1 ns 1 ns

Figure 12: Slack minimization.

Table 5: Area minimization results.

Design
Signal
power
reduction

Logic
power
reduction

Clock
power
reduction

Total
power
reduction

CRC −3.1% 0.0% 6.9% 1.2%

FM −7.7% 0.0% 31.6% 0.4%

VGA −0.7% 0.0% 1.3% 0.4%

USBF −1.6% 0.0% 2.0% 0.2%

PCI 2.3% 0.0% 1.1% 0.6%

Conv 3.2% 0.0% 1.9% 1.2%

DES3 −7.7% 0.0% 28.8% 6.9%

Mem 13.3% 0.0% 1.4% 1.6%

S1 −38.0% 0.0% 3.0% 2.8%

S2 NA NA NA NA

Table 6: Slack minimization results.

Design
Signal
power
reduction

Logic
power
reduction

Clock
power
reduction

Total
power
reduction

CRC 0.9% 0.0% 0.0% 0.3%

FM NA NA NA NA

VGA −1.7% 0.0% −1.0% −0.7%

USBF 0.0% 0.0% −2.0% −0.7%

PCI 2.4% 0.0% −0.4% 0.0%

Conv −0.6% 0.0% 1.2% 0.1%

DES3 −0.7% 0.0% −3.8% −1.7%

Mem 14.4% 0.0% 2.8% 2.1%

S1 −15.3% 0.0% −0.8% −0.9%

S2 −1.6% 0.1% 5.4% 4.1%

The results of using the slack minimization approach on
the circuit test suite are shown in Table 6. In the table the
three columns in the middle provide the power reduction in
signal, logic, and clock dynamic power in percentage. The
right-most column presents the overall power savings. As can
be seen, this technique presents mixed results, with a few cir-
cuits obtaining positive results, most with negligible differ-
ence, and a few circuits even increasing in power consump-
tion. The FM core contained no nets with only 1 or 2 levels
of combinational logic and so was not applicable to this test
run.

Individually, this technique proved the least successful
and most difficult to work with. The clock tree paring, N-
terminal net colocation, and area minimization utilize place-
ment constraints, effectively making the placement part of
the PAR tools power savvy and balancing the work load of
the PAR tools well between the placer and the router, and lit-
tle to no growth in runtime operation of the PAR tools was
observed. The slack minimization technique however utilizes
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timing constraints, effectively putting both the power op-
timization and original timing constraint work loads onto
the router portion of the PAR tools. PAR runtime increased
sharply using this technique and it was observed that even
though slack was minimized on the specified nets, unspec-
ified nets would often experience a corresponding increase
in wire length. Tightening the slack on too many nets would
also result in the original timing specifications to be unable to
be met. While individually this technique did not yield good
results, as we will see in Section 5, this technique did prove
useful when combined with the other techniques.

5. COMBINED POWER OPTIMIZATION

In the previous experiments, the four power optimization
approaches are considered individually in order to determine
the effects of the algorithm and learn more about power con-
sumption, the underlying FPGA architecture, and the behav-
ior of the COTS PAR tools. As we have observed, the clock
paring technique yields good results, while the rest of the
techniques provide mixed results. A more detailed analysis of
the test circuits and our results shows that on a per net per-
spective, the clocks are the most dominant power consumers
for all circuits in our test bench. Moreover, all of the tech-
niques presented are complimentary, utilizing different con-
straint types, and can be combined together. So for the last
experiment in our paper, we will consider clock tree paring to
be a first order optimization that needs to be performed be-
fore we can truly measure the results of the second-order op-
timizations, N-terminal net colocation, area minimization,
and slack minimization. As all of the techniques are compli-
mentary we will consider the case where all of the constraints
are applied to simplify our discussion.

Table 7 shows the overall results for the combined opti-
mization techniques, the additional power savings over the
first-order optimization, and the total power saved for each
circuit. As shown in the table, 5 out of 10 benchmark de-
signs reach their maximum power reduction by using a com-
bination of techniques. In the referencing of Table 2, the cir-
cuits which seemed to respond well to multiple optimiza-
tions, CRC, Conv, and Mem, are all logic power dominated
circuits. Clock power dominated circuits saw little to no ben-
efit from combining constraints. The final power reduction
ranges from 2.9% to 19.4%, and the average improvement is
10.2%.

6. HARDWARE VALIDATION RESULTS

In this section we seek to validate that the results we have
seen in the previous sections utilizing XPower and our LITE
tools are realizable in the real world. However, the real world
brings other constraints that further complicate matters. For
starters, the Osiris FPGA hardware boards have a fixed FPGA
device, the V2 6000. While S1, S2, and Mem from our test
suite target this same device, S1 and S2 assume different bus
and memory interfaces than our hardware, and the Mem ker-
nel did not produce enough dynamic power to yield statisti-
cally stable data with the resolution of our A/D board and the
current sensors in our testbed.

Table 7: Combined power optimization results.

Design
Combined
power
reduction

Increase
over
clock
paring

Max
power
saved
(mW)

CRC 6.7% 0.8% 2
FM 2.9% 0.0% 3
VGA 12.7% 0.2% 17
USBF 10.7% 0.0% 9
PCI 19.4% 0.7% 8
Conv 7.1% 2.2% 9
DES3 8.6% 0.0% 12
Mem 3.3% 2.6% 21
S1 10.7% 0.0% 27
S2 19.4% 0.0% 116

Table 8: Hardware power measurement results.

Design
description

XPower
estimation
(mW)

Hardware
result
(mW)

XPower:
measure
ratio

Baseline 351 281 1.25

Clock paring 334 270 1.24

Slack minimization 352 286 1.23

N-terminal net
colocation

354 280 1.26

Area minimization 342 270 1.26

Combined 333 268 1.24

So for the purposes of this paper, we created a variant of
the Conv circuit to be tested on the hardware. In this version,
the Conv circuit was instanced 5 times in order to fill the de-
vice and achieve large enough power for measurement in our
testbed.

The measurement results as well as the XPower estima-
tion are shown in Table 8. The table lists the power results
of the unoptimized design (baseline), the power optimized
designs that use a single power technique, and the combined
technique power optimized design. The second column pro-
vides the dynamic power consumption estimated by the Xil-
inx XPower tool. The third column is the power number
measured on hardware. The final column calculates the ra-
tio of the software measured values to that of the hardware
measured values. So, while XPower seems to report a con-
sistently higher value than that measured on hardware, the
ratio is nearly constant, approximately 1.24. Power optimiza-
tions measured in software carry over into hardware. Though
the absolute power varies, the relative percentage of power
decreased remains relatively constant between software and
hardware.

7. CONCLUSIONS

In this paper, we present a variety of techniques that seek to
reduce power by feeding power driven constraints into COTS



10 EURASIP Journal on Embedded Systems

PAR tools. These constraints seek to influence the FPGA im-
plementation tools to place and route a user’s design in a
more power efficient manner. Four power optimization ap-
proaches are introduced in detail and are evaluated in Xilinx
Virtex-II FPGA devices. The results show that the clock tree is
the dominant dynamic power contributor and the clock tree
paring approach is the most effective method to save power.
The techniques are not mutually exclusive and clock tree par-
ing can be combined with the other techniques to further re-
duce power. The average overall dynamic power savings on
our test suite is 10.2%. Though our experimentation has fo-
cused on the Xilinx Virtex-II architecture, these techniques
are expected to have similar results on other FPGA devices as
well.
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