
Projects, Vol. 10, 2003

Printed in New Zealand. All rights reserved.

ISSN 1172-8426

© 2003 College of Sciences, Massey University

91

A REAL-TIME FPGA IMPLEMENTATION OF A BARREL DISTORTION
CORRECTION ALGORITHM

C T Johnston, D G Bailey

Abstract: This paper presents a novel FGPA implementation of a barrel distortion correction algorithm with a
focus on reducing hardware complexity. In order to perform real-time correction in hardware the undistorted
output pixels must be produced in raster order. To do this the implementation uses the current scan position in
the undistorted image to determine which pixel in the distorted image to display. The implementation employs
the use of a look-up table with interpolation to reduce the complexity of the hardware design, without significant
loss of precision. The paper details the background of the hardware and design environment used, and then bar-
rel distortion and the model selected for correcting it. The implementation aspects are discussed and the results
of the implemented design are shown. This leads to a discussion on future work and conclusions.

Keywords: FPGA, reconfigurable hardware, lens distortion, camera calibration

1 INTRODUCTION

Image processing is often used to make non-contact
measurements for real-time measurement applica-
tions. It is therefore vital to ensure that accurate
measurements can be made from the captured im-
ages. If the use of an analogue camera is employed,
the camera must often be of greater resolution and
quality than is needed for the particular application in
order to compensate for losses incurred before digiti-
sation of the image [1]. A digital camera facilitates
early digitisation and therefore it is less crucial to
compensate for these losses. This can lead to sub-
stantial cost savings since a digital camera with lower
resolution can be used. However, the inexpensive and
wide-angle lenses often used in low cost digital cam-
eras are susceptible to barrel distortion, which can
introduce significant errors into any measurements
[2].

Barrel distortion occurs when the magnification at
the centre of the lens is greater than at the edges. A
higher quality lens can be used to correct for this but
this comes at additional cost to the image capture
system. Barrel distortion is primarily radial in nature,
with a relatively simple one parameter model ac-
counting for most of the distortion [3]. A cost effec-
tive alternative to an expensive lens is to
algorithmically correct for the distortion using the
model.

A microprocessor or DSP could be used as the im-
plementation platform for such an algorithm if proc-
essing were done offline. However, in order to
satisfy the operational constraints imposed by real-
time processing at sixty frames per second the algo-
rithm must be implemented in hardware. A fixed
hardware approach using an application specific inte-

grated circuit (ASIC) would have flexibility limita-
tions making field programmable gate arrays (FPGA)
a better choice.

An FPGA is a matrix of logic blocks that are con-
nected by switching blocks. Both the logic blocks and
the switching blocks can be programmed to build
specific hardware. Some devices also have block
RAM that can be used for on chip storage. These
connections, BlockRAMs and logic functions can be
reprogrammed for different applications to produce
application specific hardware. The inputs and outputs
to the logic can be routed to any I/O pin, allowing
for a great level of flexibility when implementing the
design. Figure 1 shows the main components of a
Spartan II FPGA.

Figure 1 Main components in a Spartan II FPGA,
taken from 4

 As such, an FPGA offers a compromise between the
flexibility of general-purpose processors and the

C. T. Johnston, D G Bailey

 92

hardware-based speed of ASICs. Performance gains
are obtained by bypassing the fetch-decode-execute
overhead of general-purpose processors and by ex-
ploiting the inherent parallelism of digital hardware,
while at the same time maintaining the ability to
change the functionality of the system with ease.

Design entry can be achieved using low-level devel-
opment methods such as schematic capture or hard-
ware description languages. However, another
alternative is to use system-level design languages
such as Handel-C that take a more high-level ap-
proach [5].

1.1 HANDEL-C

Handel-C is a language developed by Celoxica that
compiles algorithms written in a high-level C-like
language directly into gate-level netlists. It is based
on a subset of ANSI-C with syntax extensions for
hardware design such as variable data widths, parallel
processing and channel communication between par-
allel processing blocks. The language is designed to
allow software engineers to express an algorithm
without any knowledge of the underlying hardware.

As many algorithms are prototyped in a higher-level
programming language like C they must be ported
into VHDL or Verilog for implementation, which
increases the risk of errors. Handel-C avoids this
problem by using a high-level language to design the
algorithms and then directly compile them to hard-
ware [6].

Assignment statements in Handel-C take exactly one
clock cycle. All other language statements such as
control logic constructs are free and add zero addi-
tional clock cycles although they can increase combi-
natorial delays to the extent that the system clock
cycle may need to be lengthened [5].

Section two describes the algorithm used for correct-
ing barrel distortion. Section three describes a novel
approach to a hardware-based implementation of a
real-time barrel distortion correction.

The hardware used to support this implementation is
the RC100 prototyping and development board from
Celoxica, which incorporates a Xilinx Spartan-II
FPGA, video decoder, offchip RAM and video DAC.

2 BARREL DISTORTION CORRECTION

2.1 ALGORITHM

The barrel distortion model [2] is:

)1(2
ddu krrr +=

 (1)

where ru and rd are the distance from the centre of
distortion in the undistorted and distorted images
respectively, as shown in figure 1, and k is the distor-
tion parameter.

ru
xu

yu

(a) (b)

rd xd

yd

Figure 1 Barrel distortion Coordinate system

A block diagram of the complete system is shown in
Figure 2. The system is driven entirely from the scan
position of the display. Distortion correction is per-
formed by using the current scan position and a
magnification factor held in a look-up table (LUT) to
calculate the address of the corresponding distorted
pixel that is located in video RAM and the pixel is
output to the display

Distorted
Image Address

Distortion
Correction

Look up table

Video RAM Display

Undistorted
Image

Coordinate

Figure 2 System diagram

This barrel distortion model effectively gives the co-
ordinates in the undistorted image as a function of
those of the distorted image. This form is unsuitable
for real-time correction because it is necessary to
produce the undistorted output pixels in raster order.
The coordinates in the undistorted image must be
used to determine which pixel in the distorted image
should be displayed. Therefore the equation needs to
be of the form:

),(ud rkFr = (2)

As ru is calculated as:

22
uuu yxr += (3)

which involves two multiplications and one square
root, this function is very costly in terms of re-
sources. Therefore it is preferable to have the model

A REAL-TIME FPGA IMPLEMENTATION OF A BARREL DISTORTION CORRECTION ALGORITHM

93

in terms of ru2. Equation (1) may be rewritten in
terms of a radial dependent magnification as:

),(

),(
2

2

uud

uud

rkMyy

rkMxx

=

=
 (4)

where the magnification factor, M is:

21

1

du

d

krr

r
M

+
== (5)

Unfortunately this equation is still in terms of rd2
rather than ru2, but this can be solved by substituting
equation (4) into equation (5) and obtaining:

221

1

urkM
M

+
= (6)

Equation (6) may be used to iteratively solve for M in
the following manner. First, M is set to 1, and substi-
tuted into equation (6). This gives a revised value of
M, which is again substituted into the equation. This
is iterated until M converges to the desired precision.
Figure 1 shows the resultant magnification function.
Clearly, the mapping depends on the product kru2, so
this avoids having to have a separate mapping for
each k. Having a single mapping allows M(kru2) to be
precalculated and put into a lookup table.

By normalising x and y coordinates based on the size
of the image, ru2 can be made to be in the range of
zero to one. After normalisation k is also in the
range of zero to one, where a value of one corre-
sponds to severe distortion. This normalisation re-
sults in kru2 also being in the range zero to one.

Figure 3: Magnification factor from pixel radius

3 IMPLEMENTATION

3.1 HARDWARE REDUCTION

There are two advantages gained by reducing the
hardware required the first is to reduce the amount of

CLBs which are required to implement the function.
The second is that complex functions take a longer
time to compute, this is due to the propagation delays
caused by the construction logic function. These ex-
pressions with a large logic depth will slow the whole
operation of the FPGA down, as Handel-C requires
all operations to take one clock cycle. For a real time
system the system must be able to run a fast enough
to drive the output.

The calculation of xu2 and yu2 can avoid using a mul-
tiplier by making use of the fact that

12)1(22 ++=+ uuu xxx (7)

and the image is scanned in a raster fashion.

In hardware this is equivalent to xu with a 1 appended
to the bottom bit added to the previous xu2.

1@)1(22
uuu xxx +=+ (8)

In Handel-C functions can be shared by multiplexing
the input and output. As y2 and x2 are never calcu-
lated at the same time the hardware for equation 8
can be shared. It was found that there was no differ-
ence in gate count when sharing the function.

Due to the complications and large number of logic
gates needed to perform floating-point operations in
hardware, a fixed point representation was chosen.
Originally the Handel-C fixed point library was used
for performing arithmetic operations, however using
this library resulted in excessive compile times.
Therefore all variables were represented as signed or
unsigned integers and were commented to indicate
the position of the binary point. When arithmetic
operations were performed operands were shifted to
ensure alignment.

The main advantage of using fixed point notation is
that each step can have a different bit length depend-
ing on the precision required. As the image size is 503
by 480 pixels only 9 bits are required to represent x
and y. This means that 18 bits are required for y2 and
x2. To give adequate resolution for the required cor-
rection it was found 10 bits are required. Only 16 bits
are used for kru2 as the top 8 bits are used for looking
up the desired magnification in a 256 element look up
table, dicussed in section 3.2. The lower 8 bits are
used to estimate the distance the actual magnification
is from the looked up one. The final output pixel
address is 18 bits consisting of 9 bits for both x and y.
A tenth bit of x is used to choose which of the two
pixels stored in the memory location is displayed.

3.2 CALCULATING THE MAGNIFICATION

Due to the raster nature of the output yu2, is constant
for a line but xu2, and therefore M, changes for each

C. T. Johnston, D G Bailey

 94

pixel in the output. Obviously it is impractical to
evaluate M directly for each pixel and therefore a
lookup table implementation was considered using
BlockRAM resources on the FPGA. Each Block-
RAM is sufficient to provide 256 lookup entries.
Analysing the mapping in Figure 1 indicates that 256
entries covering the range of kru2 from zero to one
will only provide 8 bits of accuracy. To get 10 bits
requires four BlockRAMs; while 12 bits will use 16
BlockRAMs, more than what is available on the tar-
geted device.

To overcome this problem, a single 256 entry lookup
table is used, with interpolation between the table
values used to improve accuracy. The top 8 bits of
kru2 are used to get the magnification value from the
look up table. The next entry is also retrieved (the
BlockRAM is dual port). The difference between
these gives the slope, which is scaled by the lower 8
bits of kru2 :

+≈)]([)(22
MSBuu krMkrM

8222 2][))]([)1]([(−××−+ LSBuMSBuMSBu krkrMkrM
 (9)

Since the most significant bit of M is always 1, the
look up table does not need to store this, allowing the
table to contain M to 17 binary places. When com-
bined with interpolation the accuracy of the ap-
proximation is about 15.5 bits for 16 bits precision of
kru2.

3.3 COORDINATE TRUNCATION

Once the magnification has been found it is multi-
plied by the xu and yu position, equation (4). When
doing this calculation the coordinate for the pixel
location to be displayed is seldom an integer number.
The approach that has been taken for this implemen-
tation is to truncate the result, discarding the frac-
tional components. The results of truncation or the
alternative rounding can introduce substantial error in
pixel location. This caused distortion in lines in the
image, creating jagged edges. Figure 4 shows the ef-
fect of the used of truncation, the circles represent
actual pixels and the cross the calculated position
with fractional component, in (a) there is only a small
error, however in (b) the pixel is closer to the lower
right pixel rather than the resulting left pixel.

x x

y
y

(x,y)

(x,y)

(a) (b)

Figure 4 Effect of truncation

3.4 PIPELINING

Due to the constraint of real time processing all op-
erations have to occur in a single clock cycle. This
can be achieved by creating a pipeline where each
operation uses the results of the previous clock cycle
but resulting in a delay in output equal to the length
of the pipeline. This delay can be accommodated by
starting the pipeline calculations during the horizontal
blanking period. A five-stage pipeline shown in Fig-
ure 5 is used for determining the coordinates in the
distorted image of the pixel to be output. The dotted
lines in Figure 4 represent registers.

xu
2 = xu

2 + xu@1

kru
2 = k(xu

2 + yu
2)

Use kru
2 to look up magnification table

M using equation (6)

xd, yd using equation (4)

xd, yd coordinate looked up in memory

Previous x2

Figure 5: Pipeline for coordinate calculation

The xd used in the fifth stage is not the present xd but
one due to the delay in the pipeline it needs to be the
xd from four clock cycles ago, this can be achieved by
registering the xd at each stage, but as we agre mov-
ing is a raster order the desired xd will be the present
xd with four subtracted from it

4 RESULTS

The barrel distortion correction algorithm has been
successfully implemented and tested on the RC100
development board, figure 6.a the distorted image
and figure 6.b corrected image. This correction algo-
rithm performs the correction in real time at a rate of
60 frames per second. The utilisation of the device is
shown in Table 1.

A REAL-TIME FPGA IMPLEMENTATION OF A BARREL DISTORTION CORRECTION ALGORITHM

95

Table 1: Resource utilisation of device (XC2S200-

5FG456)

 Resource Utilisation

 CLBS

(1172 total)

BlockRAM

(14 total)

Keyboard interface 129 (11%) 1

Video decoder / VGA 235 (20%) 4

Correction algorithm 270 (23%) 1

Total 642 (54%) 6 (42%)

The correction algorithm uses 23% of the device with
most of this being used to implement the large multi-
pliers. If this were implemented on an FPGA such as
the Virtex-II that incorporates built-in multipliers the
resource utilisation would be significantly reduced.

The other resources used are not directly part of the
correction algorithm but support it. The keyboard
interface is only used to allow the correction factor to
be changed, if a fixed lens configuration was to be
used the correction factor could be fixed and the
keyboard interface removed. The video decoder and
the VGA sections are required for the capture and
display of the image.

Although it cannot be clearly seen in figure 6.b there
are some jagged edges in the image that are caused by
the coordinate truncation process.

5 FUTURE WORK

It can be seen form the resource utilisation table that
almost half of the FPGA is not utilised. This space
can be used to implement bilinear interpolation be-
tween pixels to remove the effects of coordinate
truncation, and improve the quality of the corrected
image. This requires the used of row buffering to
allow a number of pixels to be accessed in one clock
cycle and is discussed in [7].

An investigation in to whether a CMOS optical sen-
sor could be used as the memory element for the
distorted image need to be done. If this can be suc-
cessfully implemented an FPGA could be placed
between the sensor element and a memory bank with
the barrel distortion being corrected for before the
image is stored. This would then enable other image
processing functions to be done on the corrected
image by either another FPGA or a microprocessor

The types of functions that can be implemented on
FPGA hardware needs to be investigated.

6 CONCLUSION

A barrel distortion algorithm has been successfully
implemented on a FPGA, using Handel-C.

To allow the algorithm to be preformed buffering of
the image is required, for simplicity a whole frame is
buffered in to RAM

The conversion from a software algorithm to one
that runs in hardware at real-time presents a number
of difficulties.

This includes the inability to do offline processing;
this is inherent in all real time applications.

As only one off chip memory access is possible per
clock cycle any complex functions require the buffer-

ing of pixel values in the FPGA.

So that hardware can be mapped to the desired
FPGA there needs to be a minimisation of the logic
gate count.

The use of a look up table with interpolation can
reduce the complexity of the hardware design with-
out significant loss of precision compared to calculat-
ing values at run-time.

Figure 6: Results from correction algorithm

C. T. Johnston, D G Bailey

 96

Even though Handel-C was designed to raise the
level of abstraction for hardware design and shift the
focus to algorithmic design, in our experience it has
been beneficial to maintain a data flow approach at
the register transfer level. The data flow approach
has many advantages when it comes to bit manipula-
tion, logic reduction and pipeline design.

7 ACKNOWLEDGEMENTS

The Celoxica University Programme for generously
providing the DK1 Design Suite.

8 REFERENCES

1 Bainbridge-Smith, A. & Dunne, P., “FPGAs in com-
puter vision applications”, Proceedings Image and Vision
Computing New Zealand 2002, pp 347-352 (2002).

2 Bailey, D.G., “A new approach to lens distortion cor-
rection”, Proceedings Image and Vision Computing New Zea-
land 2002, pp 59-64 (2002).

3 Li, M., Lavest, S.M., “Some aspects of zoom lens cam-
era calibration”, IEEE Trans on PAMI, 18(11): 1105-
1110 (1996).

4 Xilinx, Spartan-II 2.5V FPGA Family: Complete Data
Sheet, (September 3, 2003)

5 Alston, I., Madahar, B., “From C to netlists: hardware
engineering for software engineers?”, IEE Electronics
& Communication Engineering Journal, pp 165-173
(August 2002).

6 Celoxica Ltd., HANDEL-C Language Overview, (2002).

7 K.T. Gribbon, C.T. Johnston, and D.G. Bailey, “A
Real-time FPGA Implementation of a Barrel Distortion Cor-
rection Algorithm with Bilinear Interpolation” accepted for
IVCNZ 2003 conference.

